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Abstract. Options constitute integral part of modern financial
trades, and are priced according to the risk associated with buying
or selling certain asset in future. Financial literature mostly con-
centrates on risk-neutral methods of pricing options such as Black-
Scholes model. However, using trading agents with utility function
to determine the option’s potential payoff is an emerging field in
option pricing theory. In this paper, we use one of such method-
ologies developed by Othman and Sandholm to design portfolio-
holding agents that are endowed with popular option portfolios such
as bullish spread, bearish spread, butterfly spread, straddle, etc to
price options. Agents use their portfolios to evaluate how buying or
selling certain option would change their current payoff structure.
We also develop a multi-unit direct double auction which preserves
the atomicity of orders at the expense of budget balance. Agents are
simulated in this mechanism and the emerging prices are compared
to risk-neutral prices under different market conditions. Through an
appropriate allocation of option portfolios to trading agents, we can
simulate market conditions where the population of agents are bear-
ish, bullish, neutral or non-neutral in their beliefs.

1 Introduction

The classic finance literature on derivatives is mostly based on Black-
Scholes framework [1] which prices options from the perspective of
no arbitrage assumption. According to this assumption, if there is a
strategy with other financial instruments in the market which could
simulate the payoff structure of the created financial contract, the
value of such contract must be equal to the total cost of running this
strategy. European option is one example of such financial contracts
that gives the right to its holder to buy or sell certain asset at an agreed
price in future. Black and Scholes showed that the payoff from hold-
ing an option (i.e. European option onwards) can be replicated by
taking positions in two different markets: one is risk-free investments
market, and the other is risky assets market. There is a mathematical
solution which requires the parameters of these underlying markets
to be set in order to compute the risk-neutral price of given option. In
its initial formulation, Black-Scholes framework models the risky un-
derlying market as Geometric Brownian Motion (GBM) which also
implies the efficiency of that market. Moreover, the risk-free market
was assumed to be static, so that the risk-free rate the investor has
chosen to price the option remained constant throughout the lifespan
of the option. Since then, similar models have been developed under
different assumptions about the underlying market, and some of the
important ones are Black-Scholes-Merton model which assumes that
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the asset prices are discontinuous [11] and Heston model which as-
sumes that the volatility of the asset prices also changes according to
certain stochastic model [7].

However it is known that contemporary financial markets are pop-
ulated with heterogeneous traders using different methodologies that
model the behaviour of markets. These are the crucial factors for each
trader to make buying or selling decision. There have been many re-
searches which propose agent-oriented approaches to price options,
in contrast to the previous models which were directed at model-
ing the behaviour of the markets as a whole. In agent-oriented ap-
proaches, the behaviour of an individual trader is designed, so they
can be simulated to obtain aggregate prices. This approach is also
referred as indifference pricing, so the agents are indifferent to the
exposed risk of buying or selling a contract based on their individ-
ual utility function. Another important aspect of indifference pric-
ing is that there is no unique price as it happens to be in monolithic
frictionless markets described in classic finance, but different bid-
ding and asking quotes for each agent using different utility function.
Gerber and Pafum described risk-averse traders based on an expo-
nential utility function which could produce a bid-ask spread around
risk-neutral option prices [4]. The width of the bid-ask spread could
be specified by the risk-averseness factor of the exponential utility
function. The other application of utility functions in pricing deriva-
tives can be the use of intrinsic aspects of the agent’s implementation
such as portfolio, budget constraints, transaction costs and the other
market related frictions. Carmona [2] and Henderson etal [6] pro-
vide extensive overview of indifference pricing methodologies used
in practice.

Beyond designing the trader’s behaviour, there has been a con-
siderable advancement in designing market mechanisms too. Such
mechanisms could determine the equilibrium prices and efficient al-
locations of goods from the corresponding behaviour of participating
agents. Typical implementations of auctions have realised these ob-
jectives along with other important properties such as incentive com-
patibility, individual rationality and budget-balance. Strategyproof
auctions can always guarantee truthfulness of participating agents
through revelation principle and some even allow traders to be more
expressive in revealing their combinatorial preferences. Parkes etal
[13] and Parsons etal [14] provided up-to-date survey of different
auction protocols, their designs and implementations.

The key question that we are posing in this paper is what option
prices emerge if the traders come to the market already owning some
option portfolio, and they also make their pricing decisions based
on this factor. How would the prices be different from traditional
risk-neutral prices? In this paper, we develop an agent-based system
which uses direct double auction mechanism designed for trading
multi-unit orders which also preserve the atomicity of orders. We



use inventory-based Logarithmic Market Scoring Rule (LMSR) op-
tion trader developed by Othman and Sandholm [12] to enable the
option pricing based on the trader’s current portfolio. Such agents
price options based on the payoff structure of their current portfo-
lio. For example, if the agent already owns short and long market
positions on certain number of Out-of-The-Money (OTM), At-The-
Money (ATM) and In-The-Money (ITM) options, his payoff can be
different based on the underlying asset price on maturity date. And by
pricing any given option with respect to his portfolio, agent computes
the logarithmic score difference between his current payoff structure
and the new payoff structure after buying or selling the option. We
endow the LMSR traders with commonly used option portfolios such
as bullish spread, bearish spread, butterfly spread etc. and run them
in our proposed mechanism. This allows us to set up different scenar-
ios in the market and observe the changes in option prices to evaluate
their sensitivity to certain factors such as changes in the asset price or
time-to-maturity of the option. The resulted prices are also compared
with the theoretical Black-Scholes prices as well as their theoretical
sensitivity to different factors. Besides that, we show the range of
accepted bids and asks on each trading day, and analyse the relative
efficiency and the distribution of differences in mechanisms budget.
The key contribution of this paper is that it shows how option prices
may differ from the theoretical prices when the option traders utility
is based on their corresponding portfolios. Moreover, it proposes a
new methodology in option pricing via double auctions which would
enable the analysts to mix different indifference pricing methodolo-
gies together to obtain competitive option prices.

2 Options

Option is the type of financial derivative that enables its holder (i.e.
owner) to buy or sell specified assets at certain future price to writer
(i.e. issuer) of the option. Holder of the option buys for an additional
cost (i.e option premium) determined by the market or the writer of
the option. On the other hand, the writer of the option sells by taking
future obligation to trade assets if holder chooses to exercise his right
to buy or sell. Option contract must specify the underlying asset to be
traded, its volume, strike price and expiration date. European options
can be exercised only on their maturity date, while American options
on any date until expiration. We will use only European options in
the scope of this paper.

Options are defined as put or call options depending on rights and
obligations that they bear. Put option gives its holder the right to sell
underlying assets at agreed strike price, where the writer has the lia-
bility to buy them when holder exercises his right. Call option gives
its holder the right to buy at agreed strike price, while the writer has
the liability to sell. Option’s value usually depends on several param-
eters of the underlying market such as spot asset price S0, risk-free
rate r and asset price volatility σ, and the conditions written in the
option contract such as strike price K and time to maturity T . The
other parameter of the asset (if it is a company stock) is the dividend
it yields annually. This is normally subtracted from the overall return
the asset is likely to make, but in this paper, we assume that the as-
set does not yield any dividend. There is an established relationship
between put and call options with the same strike price and maturity
date. This relationship results from the possibility of buying the one
and selling the other. Using the put-call parity relationship, we can
easily convert call prices to put prices, and vice versa. Therefore in
our simulation, we only price call options, because the put price can
be directly obtained from call price. Interested reader can look up the
Black-Schole’s formula[1] for risk-neutral pricing of options. Option

OTM ATM ITM
CALL K > St K = St K < St
PUT K < St K = St K > St

Table 1: Options by Moneyness

belongs to different moneyness range at any given time t depending
on whether its strike is greater or less than the current asset price.
Table 1 summarises the options by moneyness.

2.1 Greeks
Greeks analysis provides set of measurements for evaluating the sen-
sitivity of option price on different factors in the market. They have
important role in hedging portfolios and evaluating the volatility of
the asset prices. We consider two of them for purpose of our analysis
of option prices obtained from the simulation.

1. Delta ∆ = ∂c
∂S

: It measures the rate of change of the option price
with respect to the change in price of the underlying asset. For
example, if the delta of the call option is 0.4, then it means that if
there is small change in the underlying asset’s price, there will be a
change in call options price in 0.4 of that amount. Delta is defined
as the partial derivative of option’s price function with respect to
underlying asset price.

2. Theta Θ = − ∂c
∂τ

: It can be defined as the sensitivity of the option
price to the passage of time, or ’time decay’. Its value is always
negative, as option price becomes less sensitive to time as it ap-
proaches its maturity date. In other words, the payoff the option
yields is more certain near its maturity.

2.2 Option Portfolios
We review different types of option portfolios used in practice.
Traders can take different positions with options of different mon-
eyness and create option portfolios which can align with their fore-
cast and at same time limit their loss in case if their forecast is
not true. Cohen counts more than 40 option portfolios and classifies
them based on their market direction (i.e. bullishness or bearishness),
volatility level, riskiness and gain [3]. We will not use all of them, but
consider only the ones used in the scope of this work.

Let us consider, butterfly spread. This type of spread involves tak-
ing positions in options with three different strike prices. In butterfly
call spread, trader has an estimate that the price is not going to change
sharply, so he wants to stay neutral. He buys 2 call options: one ITM
with low K1 and one OTM with high K3. At the same time, he sells
2 ATM calls withK2, whereK2 is halfway between the range ofK1

and K3. This spread leads to a profit if the asset price will not go far
from its current spot price. It will incur in fixed loss if the asset price
changes sharply in either directions. Butterfly spread can be created
using put options as well. Figure 1 illustrates payoff structure of a
butterfly call spread.

We can summarize the option portfolios used in the scope of this
paper in Table 2 where cA stands for ATM call, pA ATM put, and so
forth.

3 Portfolio-holding Trading Agent
In prediction markets [15], the informants are allowed to change the
aggregator’s payoff structure for a corresponding payment. For ex-
ample, if aggregator is accepting bets for teams A and B on a football



Figure 1: Butterfly Spread with Call Options.

Name cA pA cO pO cI pI
Bull Call Spread 0 0 -1 0 1 0
Bear Call Spread 0 0 1 0 -1 0
Butterfly Call Spread -2 0 1 0 1 0
Long Call Ladder -1 0 -1 0 1 1
Short Call Ladder 1 0 1 0 -1 0
Iron Butterfly -1 -1 1 1 0 0
Long Straddle 1 1 0 0 0 0
Long Strangle 0 0 1 1 0 0
Short Strangle 0 0 -1 -1 0 0
Strip 1 2 0 0 0 0

Table 2: Some of the Popular Option Portfolios

match, and his current payoff structure is (300,200) meaning that the
aggregator has to pay $300 in total if team A wins, and $200 if team
B wins. However one would like to bet on team A, and he expects
to receive $50 if his bet is achieved. The aggregator changes his pay-
off structure to (350,200) by accepting the bet, and he also needs to
decide how he can charge the client for accepting his bet. The most
common method for evaluating the cost of accepting the bet in pre-
diction markets, LMSR [5] and it is defined as a cost function for the
vector of payoffs x = {x1, x2, . . . , xn} on the probability space of
events Ω = {ω1, ω2, . . . , ωn}:

C(x) = b log

(∑
i

exp(xi/b)

)
(1)

where b > 0 is a liquidity parameter. The larger values of b produce
tighter bid/ask spreads, but may also incur larger worst-case losses
capped by b log(n) [12].

The agent who wishes to change the payoff from x to y has to
pay the difference between the costs C(y) − C(x). In our above
example, given that b = 100, the aggregator accepting bets must
charge the client C((350, 200))−C((300, 200)) ≈ $39 for the bet.

The same principle can be used for the option trader who holds a
certain portfolio of options that generate certain payoffs for differ-
ent asset price outcomes, and prices other options from the point of
his own payoff structure. The agent can virtually simulate buying or
selling particular type of option and compute the changes it makes
to his current payoff structure. For example, let agent take butterfly
call spread by buying ITM call at strike K1 = 80 and OTM call at
K3 = 120, and selling 2 ATM calls at K2 = 100. We can compute
his discounted payoffs for the range of possible prices where the as-
set price can end up at time T . Let this payoff structure be x, and it
can be depicted as in Table 3. The trader feels bullish and wants to

buy one more call option at strikeK4 = 130. This should change his
payoff structure to y as shown in Table 4.

Asset Prices Payoffs x

< 70 0.00
75 0.00
80 0.00
85 4.75
90 9.51
95 14.26

100 19.02
105 14.27
110 9.51
115 4.75
120 0.00

> 125 0.00

Table 3: Potential payoffs of the trader holding butterfly call spread BEFORE
buying call at K4 = 130

Asset Prices Payoffs y

< 70 0.00
75 0.00
80 0.00
85 4.75
90 9.51
95 14.26

100 19.02
105 14.27
110 9.51
115 4.75
120 0.00
125 0.00
130 0.00
135 4.75
140 9.51

> 145 e−rT (St − 130)

Table 4: Potential payoffs of the trader holding butterfly call spread AFTER
buying call at K4 = 130

As it can be seen from tables 3 and 4, buying a certain type of
option can significantly change the payoff structure of the trader. The
agent’s bid for buying an OTM option atK4 = 130 can be computed
from the difference of his payoff structures C(y) − C(x), and in
our particular case is $1.42 given that the liquidity parameter is b =
2500. We can also compute the Black-Scholes price of such option
given parameters T = 1, r = 0.05, S0 = 100, σ = 0.02 and it is
$2.52. This would mean that the trader places a bid for given OTM
option less than its risk-neutral value.

We have simulated bids and asks for the call option with different
strikes setting the liquidity parameter b = 100 and compared it with
Black-Scholes prices. Figure 2 illustrates the bids and asks of LMSR
trader holding butterfly call spread. This shows the breadth of bid-ask
spread for the call option under different strikes.

To sum up, the indifference pricing methods like LMSR takes into
account the agent’s current portfolio and make option pricing deci-
sions based on this information. We can use this principle in pop-
ulating the option market by traders holding various portfolios, and
observe the resulted option prices.



Figure 2: Bids and asks of LMSR trader holding butterfly call spread in com-
parison with Black-Scholes prices.

4 Direct Double Auction

We extend McAfee’s double auction [10] to a multi-unit double auc-
tion, but in the process we have to give up its weakly budget-balanced
property and introduce an agent who has to subsidise the exposed
multi-unit bid or ask in order to preserve strategyproofness of the
mechanism and the atomicity of orders. There have been a num-
ber of multi-unit double auction designs proposed previously [8, 9]
which support weak budget-balance property. However these mecha-
nisms partially satisfy the orders to spread the burden of overdemand
or oversupply. In this design, we propose a multi-unit double auc-
tion that preserves the atomicity of orders at the expense of budget-
balance. The reason for such a requirement is that it is crucial for
the option trader who uses option portfolios. Because option portfo-
lio determines exactly at which quantity each type of option needs
to be sold or bought, trader cannot take quantity less than requested.
The violation of atomicity of orders would result in the distortion of
option portfolio as a whole.

Consider multi-unit bid as a tuple bi = (bi, qi) where bi is per unit
bid, and qi is the amount demanded. The same is defined for multi-
unit ask. We can split this tuple into set of equally-valued single-unit
bids bi =

⋃qi
t=1 bi,t. This can be done to asks as well. Then we

have complete set of bids b =
⋃n
i=1 bi and asks a =

⋃n
i=1 ai. We

can use single-unit McAfee’s mechanism to find the allocation and
payment. However, we can observe below that not all bids/asks can
be fully satisfied.

Lemma 4.1. In multi-unit McAfee’s mechanism, there exists at most
one multi-unit bid/ask which is partially satisfied, and the remaining
winning bids/asks are fully satisfied.

Proof. Let us assume that we use McAfee’s matching rule for ex-
panded set of single-unit bids b and asks a ordered subsequently
by its host multi-unit bid or ask. Then we should have some k
such that b(k) ≥ a(k) and b(k+1) < a(k+1) for their constituent
single-unit bids and asks. We can also claim, without loss of gen-
erality, that there exists such a multi-unit bid bi such that two of
its bids b(k), b(k+1) ∈ bi. This would imply that b(k) = b(k+1).
However, there cannot be some multi-unit ask aj having asks such
that a(k) = a(k+1), because it contradicts with b(k) ≥ a(k) and
b(k+1) < a(k+1). Hence, a(k) and a(k+1) must belong to different
multi-unit asks. It must also be the case that the multi-unit ask which

owns a(k) is fully satisfied, and so do other preceding winning multi-
unit bids and asks.

We can formulate an LP problem for for multi-unit bids and asks
where λi ∈ [0, 1] now. So it is not binary any more, and takes any
value between 0 and 1. When it takes 1, the multi-unit bid/ask is fully
satisfied, zero means it is rejected. But when λi ∈ (0, 1), the agent
i is partially satisfied. For given vectors of valuations and quantities
(v, q), allocation rule for multi-unit double auction is:

max
λ

∑
i

qiλivi (2)

s.t. λi ∈ [0, 1] ∀i (3)∑
i

qiλi = 0 (4)

where qi ∈ Z represents quantities, vi is the agent’s valuation, λi is
an allocation decision variable.

The solution of above allocation problem can be used to find the
volume demanded and supplied. Below are the formulas for comput-
ing the volumes of matched multi-unit bids Vb and asks Va.

Vb =
∑
i

qi s.t. qi > 0, λi > 0 (5)

Va =
∑
i

|qi| s.t. qi < 0, λi > 0 (6)

Let us denote the number of multi-unit bids matched (both fully and
partially) as K, and for multi-unit asks L. Also Kth multi-unit bid
would mean the lowest bid matched, and Lth multi-unit ask would
mean highest ask matched. I denote their quoted valuations as bK
and aL, and quantities as bqK and aqL respectively. From Lemma
4.1, we know that there is at most one λi ∈ (0, 1) exists, so let us
denote this as λ∗. It can also be noted that if such λ∗ exists, it either
belongs toKth multi-unit bid, or Lth multi-unit ask. Now depending
on whether λ∗ exists, and if it exists, to whom it is assigned to, we
apply appropriate payment rule. There are 3 cases that can emerge in
this mechanism:

1. No λ∗: This would mean that supply and demand is matched ex-
actly, hence Va = Vb. In this case, buyers pay at bK+1, sellers
receive at good aL+1. Because bK+1 < aL+1, mechanism sub-
sidises the deficit of Va(aL+1 − bK+1).

2. λ∗ is assigned to buyer: This means that there is an over-demand,
hence Vb > Va. In this case, mechanism rejects Kth multi-unit
bid. If there is a tie, it is randomly resolved. The remaining K− 1
buyers pay bK per unit,L sellers receive aL+1 per unit. As the im-
plication ofKth buyer rejection, a number of sellers at the bottom
of the list can be exposed to Va − Vb + bqK number of goods un-
matched. So mechanism pays out aL+1(Va − Vb + bqK) to them.
Because bK < aL+1 and number of full matches is Vb − bqK ,
mechanism subsidises in total the deficit of (Vb − bqK)(aL+1 −
bK) + aL+1(Va − Vb + bqK).

3. λ∗ is assigned to seller: This means that there is an over-supply,
hence Vb < Va. In this case, mechanism rejects Lth multi-unit
ask. If there is a tie, it is randomly resolved. The remaining L −
1 sellers receive aL per unit, K buyers pay bK+1 per unit. As
the implication of Lth seller rejection, a number of buyers at the
bottom of the list can be exposed to Vb−Va+aqL number of goods
unmatched. So mechanism sells out in total bK+1(Vb−Va+aqL)
worth of goods, and generates income. Because bK+1 < aL and
number of full matches is Va−aqL, mechanism subsidises in total
the deficit of (Va − aqL)(aL+1 − bK)− bK+1(Vb − Va + aqL).



In above payment rules, mechanism is not only taking loss from
clearing bids and asks at their offsetting prices, but also covering the
exposed bids and asks resulting from the rejection of least efficient
traders. Although the first part of the mechanism’s loss can be in-
significant in competitive markets due to narrow difference between
inefficient bid and ask, the second part contributes the large portion
of it, as the mechanism takes the responsibility to cover the exposed
bids or asks. Given that the difference between aL+1 − bK is in-
significant, the worst case budget-deficit for the mechanism is given
below:

q̄(K − 1)(aL+1 − bK) + aL+1(q̄ − 1) (7)

In worst case budget-deficit scenario, all buyers submit cap quanti-
ties q̄, and Kth multi-unit bid is covered for q̄ − 1 of its bid. The
mechanism rejects Kth bid, and leaves q̄ − 1 quantities for matched
asks exposed. Mechanism spends extra aL+1(q̄ − 1) to cover these
exposed asks. Hence it is the incentive of the mechanism to keep q̄
as low possible to minimise its loss.

Theorem 4.1. Proposed multi-unit double auction is Dominant
Strategy Incentive Compatible (DSIC) and individual rational.

Proof. Proof is done using Vickrey’s argument. Without loss of gen-
erality, let us assume buyer i submits multi-unit bid (bi, qi) and
bi > vi.

1. No λ∗: Then the clearing price is bK+1, K buyers trade and there
is no partially satisfied bid. If buyer gets fully satisfied, then bi ≥
bK+1. So buyers utility is vi − bK+1, and in case if it is vi <
bK+1 buyer gets negative utility, while if he posted vi he would
not trade and his utility would be zero. If vi ≥ bK+1, the utility is
indifferent to truthful bidding. If his bid is rejected, buyer is also
indifferent.

2. λ∗ assigned to buyers: Then the clearing price is bK ,K−1 buyers
trade and there is one partially satisfied bid. If buyer gets fully sat-
isfied, the above Vickrey’s argument applies for critical bid bK . If
buyer gets rejected, he is indifferent to truthful bidding. However
if buyer is partially satisfied, then bK = bi > vi, he is rejected
and he would be rejected for submitting vi. So he is indifferent.

3. λ∗ assigned to sellers: Then the clearing price is bK+1, K buyers
trade and there is no partially satisfied bid. The same argument for
no λ∗ case applies here.

In case if bidder submits bi < vi.

1. No λ∗: Then the clearing price is bK+1, K buyers trade and
there is no partially satisfied bid. If buyer gets fully satisfied, then
vi > bi ≥ bK+1 and buyer has the same positive utility. If buyer
gets rejected, and vi > bK+1, buyer misses the positive utility,
otherwise he is indifferent.

2. λ∗ assigned to buyers: Then the clearing price is bK ,K−1 buyers
trade and there is one partially satisfied bid. If buyer gets fully sat-
isfied, he is indifferent. If buyer gets rejected, the above Vickrey’s
argument applies for critical bid bK . However if buyer is partially
satisfied, then bK = bi < vi, he is rejected and misses a positive
utility.

3. λ∗ assigned to sellers: Then the clearing price is bK+1, K buyers
trade and there is no partially satisfied bid. The same argument for
no λ∗ case applies here.

So there is a dominant strategy for buyer i, and it is bi = vi.
If buyer plays his dominant strategy, his utility is always non-

negative. Hence, buyer is ex-post individual rational. Same argument
applies to sellers.

There two ways of looking at the efficiency of the mechanism we
proposed. First way is computing the efficient trades happened within
the mechanism. Because mechanism takes the place of Kth (Lth)
rejected partially satisfied buyer (seller), the efficient trades are not
lost. Hence mechanism can be considered efficient. However there is
a partially satisfied bid (ask) rejected from the trade. In second way
of looking at mechanism’s efficiency, we can consider this rejected
partially satisfied bid (ask) as the lost efficiency, because the traders
are not benefiting from it. In this case, at most q̄ − 1 units of goods
supposed for trade can be lost.

Also it is worthwhile to mention that the proposed mechanism is
tractable, because it uses LP for determining the allocation which is
polynomially solvable, and the payment rule is O(1).

5 Experimental Results

We have simulated the asset prices using the Geometric Brownian
Motion with a calibrated parameters according to the historic data
of NASDAQ-100 index in 2014. The daily mean drift is computed as
µ = 0.0007, and and the volatility is σ = 0.0089. The figure 3 shows
the instance of simulated asset prices that I use for all experiments.
It can be seen that the initial asset price is the same as NASDAQ-100

Figure 3: Simulated NASDAQ-100 Indices

on 2 January 2014, S0 = $3563.57, and the it is ST = $3597.59 at
the end of the year. This particular instance of asset price is interest-
ing because it includes dramatic fluctuation near the end of the year.
This should enable us to stress test the option pricing methods that
are proposed. We also analyse option with strike $3563.00 which is
ATM. Also we use only call options for the simulation, because put
prices can be directly computed from the call price using put-call
parity relationship.

LMSR traders create a positive bid-ask spread, which forbids them
from trading if the market is uniformly populated with LMSR traders
holding the same portfolio. Therefore LMSR trader should be also
simulated in mixed groups each holding different set of portfolios,
and thus produce different prices. It is also important to note that
LMSR trader is deterministic in their pricing, because the only factor
which affects their pricing decision is their portfolio and fixed range
of events horizon that they use to compute their final payoff. There-
fore two LMSR traders holding the same portfolio produce same bids
or same asks. To make market more heterogeneous, I use most of the
option portfolios given in Table 2 to simulate traders from neutral,
non-neutral, bullish and bearish perspectives. The full list of LMSR
traders with the portfolios they hold is given in Table 5.

After running several experiments with LMSR traders, we found
out that liquidity b = 100 provides reasonable range of bids and asks
which are likely to produce trades in the market. LMSR trader picks
random quantities between -2000 and 2000 while submitting orders,



Trader Name Belief Portfolio
LMSR-NEUT1 Neutral Butterfly Call Spread
LMSR-NEUT2 Neutral Iron Butterfly
LMSR-NEUT3 Neutral Long Call Ladder
LMSR-NEUT4 Neutral Short Strangle
LMSR-NON-NEUT1 Non-Neutral Short Call Ladder
LMSR-NON-NEUT2 Non-Neutral Long Straddle
LMSR-NON-NEUT3 Non-Neutral Long Strangle
LMSR-NON-NEUT4 Non-Neutral Strip
LMSR-BULL Bullish Bullish Call Spread
LMSR-BEAR Bearish Bearish Call Spread

Table 5: LMSR Traders and their portfolios

so agent’s decision to buy or sell is uniformly distributed. The nega-
tive quantities stand for asks, and the positive ones are bids. Table 6
lists some experimental scenarios using different LMSR traders to-
gether.

Groups Traders Population

NEUT,NON-NEUT

LMSR-NEUT1
LMSR-NEUT2
LMSR-NON-NEUT1
LMSR-NON-NEUT2

25
25
25
25

ALL

LMSR-NEUT1
LMSR-BULL
LMSR-BEAR
LMSR-NON-NEUT1

25
25
25
25

MORE BULL

LMSR-NEUT3
LMSR-BULL
LMSR-BEAR
LMSR-NON-NEUT3

10
70
10
10

MORE BEAR

LMSR-NEUT4
LMSR-BULL
LMSR-BEAR
LMSR-NON-NEUT4

10
10
70
10

Table 6: Experiments with LMSR Traders

Mechanism simulates 365 trading days going up to the point the
option expires. It feeds the option market with new asset price in-
formation and collects corresponding bids and asks from LMSR
traders. Because mechanism is direct, it clears order in one round
and switches to the next trading day. Every trading day, the traders
are re-instantiated with the same distribution of portfolios so they do
not remember their previous choices. Greeks are simulated by lin-
early changing the control factors (asset price or time to maturity)
and fixing the other parameters constant, and inputting the given set-
ting to a mechanism populated with the same traders.

Figure 4 shows the trade between neutral and non-neutral portfo-
lio holders. It can be seen that the prices are volatile around Black-
Scholes prices. This is explained using the deterministic nature of
LMSR traders. The whole market consists of 2 neutral LMSR traders
and 2 non-neutral LMSR traders who output all together 8 different
pricing quotes, 4 for bids and 4 for asks. We can even see this from
the range of accepted orders which has been drawn around clear-
ing prices. So naturally, one of 4 bids and one of 4 asks is used as
the clearing price for the matched orders. Because mechanism has
very few choices to determine the clearing price among mostly ho-
mogeneous quotes, the option price for each trading day differs sig-
nificantly. In Figure 5, we can see that the prices start with the same
volatility, but upon maturity they get close to the option’s real payoff.
Figure 6 illustrates the market mostly populated with bullish traders.

In this example, there is no much volatility, and the prices are gen-
erally close to risk-neutral price. However in the market of bearish
traders as shown in Figure 7, the call options are initially under-
priced, as they are considered less profitable for the traders expect-
ing the drop in asset prices. However the prices cross the risk-neutral
price only after option lives the half of its lifespan. This is because the
payoff from the option becomes more certain, as the asset prices con-
tinue to grow defying the bearish belief of the trader. We simulate the

Figure 4: NEUT,NON-NEUT Traders Figure 5: ALL Traders

Figure 6: MORE BULL Traders Figure 7: MORE BEAR Traders

Greeks using the mixed population (i.e. group ALL) of LMSR traders
for OTM, ATM and ITM calls and compare them with Black-Scholes
analytical solutions. Simulation of Greeks involves fixing all param-
eters of the market, except the one which is tested for sensitivity. For
example, the delta is measured by linearly changing the asset prices
in the mechanism while fixing the passage of time and other param-
eters such as the population of traders, risk-free interest rates, etc.
Figure 8 shows the deltas obtained from the simulation, and it can be
seen that they steeper compared to Black-Scholes’ analytical delta.
This means that in a market populated with LMSR traders the option
prices are highly sensitive to the changes in the asset price. Similar to
risk-neutral pricing, the option price is highly volatile when the asset
price is around its corresponding strike. The steepness of delta can
be explained using characteristics of the mechanism and the LMSR
traders involved. Because LMSR traders produce limited number of
different bids and asks for the same option, and the mechanism has
to clear the orders using the critical bids and asks, the sharp jumps in
option prices are plausible. We have also simulated the option theta
for the same configuration of the market. In Figure 9, we linearly
changed the asset prices and computed the option’s sensitivity to the
change in time. We can see how the option price loses less than risk-
neutral price when the asset price is around its strike as it approaches
its maturity date. This is because LMSR traders are more inclined
to their private beliefs related to the payoff from the portfolios they
hold. This results in less change in option price compared to risk-
neutral traders when the option is nearing its maturity date. We also



Figure 8: Option’s delta Figure 9: Option’s theta

observed that theta is less than the analytical solution if simulated per
change in time-to-maturity.

From above simulations, we also found out that about 10% of ef-
ficient trades have been rejected by the mechanism to preserve the
atomicity of other orders. It also means that mechanism had to cover
up 10% of overall trades due to this rejection. Also surplus or defi-
ciencies resulted from clearing the trades has been distributed around
zero.

6 Concluding Remarks

In this paper, we have simulated LMSR-based option trading agents
holding popular option portfolios in a multi-unit direct double auc-
tion to analyse the resulted option prices. Our simulation results have
shown that pricing option via double auctions is a valid technique as
the obtained prices were close to risk-neutral solution if the mar-
ket was populated with traders having different beliefs. Besides that
we were able to observe option prices under different population of
traders with bearish, bullish, neutral and non-neutral beliefs mod-
elled through their corresponding portfolios. For example, we have
seen that the neutral and non-neutral traders create volatility as their
portfolios consist of opposite payoff structure. Also in more bearish
population of traders, the calls were initially underpriced until the op-
tion reached half-way to its maturity. When all traders are simulated
together, the volatility of prices subsided as the option approached
its maturity date. From Greeks analysis, we found out that the option
prices are highly sensitive to the changes in the asset price, while
they are less sensitive to the change in maturity date. This can be
seen from the comparatively fixed width of accepted orders too in
the simulation of the marketplace. Moreover we determined that in
our current setting, we could generate enough volume if we set the
liquidity parameter to b = 100. We also analysed the mechanism’s
relative efficiency and the budget balance.

This approach can be further improved using other incentive com-
patible mechanisms such as original McAfee’s double auction with
single-unit orders. Also the traders can be more sophisticated in mak-
ing buy or sell decisions rather than randomly choosing the either ac-
tion. Also other indifference pricing methods such as traders with ex-
ponential utility, zero-intelligence traders, etc can be simulated with
our presented agents to observe their impact to the results obtained,
and to analyse how they are different from the standard risk-neutral
valuation techniques.
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