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Abstract. This paper presents the design and simulation of direct
exchange mechanisms for pricing European options. It extends McAfee’s
single-unit double auction to multi-unit format, and then applies it for
pricing options through aggregating agent predictions of future asset
prices. We will also propose the design of a combinatorial exchange for
the simulation of agents using option trading strategies. We present sev-
eral option trading strategies that are commonly used in real option
markets to minimise the risk of future loss, and assume that agents can
submit them as a combinatorial bid to the market maker. We provide
simulation results for proposed mechanisms, and compare them with
existing Black-Scholes model mostly used for option pricing. The sim-
ulation also tests the effect of supply and demand changes on option
prices. It also takes into account agents with different implied volatility.
We also observe how option prices are affected by the agents’ choices of
option trading strategies.

Keywords: Mechanism design · Option pricing · Double auctions ·
Combinatorial exchanges · Prediction markets

1 Introduction

Standard financial theory provides a number of methods for calculating option
prices based on the market performance of an underlying asset. But there are few
models that take into account strategic agents playing in this market, and their
role in forming the prices. It is commonly assumed that an individual trader is
mostly a price-taker and therefore her influence to the market is insignificant. But
in reality, traders with their aggregated utilities form the market prices. Although
it is almost impossible to know how each individual agent would evaluate the
risk in the market, we can still model them with reasonable properties such as
rationality, strategic behaviour and risk-neutrality. This would provide a testable
environment where various market mechanisms and trading behaviours can be
simulated and used for taking analytical decisions.

There has been a growing interest in the research of markets as complex
game-theoretic systems since Myerson coined mechanism design as a frame-
work for strategic interactions between self-interested agents [1]. A new disci-
pline of auction theory emerged as a part of mechanism design, and it found
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its applications in solving many of well-known problems such as resource alloca-
tion, scheduling, supply chain optimization, operations control and multi-agent
system implementation [5]. The ultimate goal of any auction is the allocation
of scarce resources to agents. The space of auction types is limitless, because
they may vary in their initial settings, bidding rules, market clearing methods
etc. Parsons describes more than 30 variations of auctions based on proper-
ties such as dimensionality, quantity and heterogeneity of traded items; direc-
tion, sidedness, openness of accepted bids; and kth order prices in determining
winners [4].

There have been a number of researches accomplished in applying auction
mechanisms to model prediction markets. One of the famous examples of such
mechanisms is Iowa Electronic Markets used for aggregating predictions on polit-
ical elections [12]. DeMarzo et al. have used regret minimisation of agent deci-
sions on compiling a replicating portfolio which is equivalent to European option
value [11]. King et al. has described a multi-agent model for derivatives market
which used Gaia methodology [9] to match and coordinate agents. Espinosa has
implemented a multi-agent system which uses options to allocate scarce resources
through a market-like model [6].

We will focus more on Double Auctions (DA) and Combinatorial Exchanges
(CE) in this paper. DA is an auction mechanism which involves sellers and buyers
trading identical goods using single-item bids. McAfee laid the foundation of DA
specifying the direct implementation of a DSIC mechanism which could match
bids and asks efficiently [13]. CE is the generalisation of DA where traders are
allowed to submit bids and asks as a bundle for heterogeneous goods. We will
use DA and CE as prediction markets to evaluate option prices.

The paper is organised as follows. Section 2 provides the basic framework
within which we will construct our mechanisms. We will define fundamental
concepts used in auction theory and review the main aspects of option pric-
ing. In Sect. 3 we will talk about how traders are going to produce bids and
asks, and select option trading strategies (OTS). Then we will walk through
the design of multi-unit DA and consequently the CE mechanisms. Section 4
provides experimental results obtained from the simulation of both proposed
mechanisms. Finally, in Sect. 5 we conclude highlighting the important aspects
of our work.

2 Preliminaries

In this section, we explain some of the key concepts that we use throughout this
paper. This involves the basic framework for mechanism design and some brief
overview of options and their intrinsic values.

2.1 Designing Mechanisms

The very idea of designing mechanisms imply making rules for given game set-
tings that incentivise truthful revelation of agent types. In terms of auctions,
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it can be seen as the truthful bidding of agents. Myerson proved that if the
allocation rule of the auction is monotone, then there is a unique and explicit
payment rule which makes the mechanism dominant strategy incentive compati-
ble (DSIC) [3]. This payment rule should include the critical values of each agent
who has been allocated with goods. Critical value of an agent is the value that
the agent needs to beat in order to get the good. For example, in terms of single-
item auction, the payment rule corresponds to the second price, because agents
must beat the second price to be the winner of the auction. In a continuous
domain, Myerson’s payment rule can be defined as follows:

Definition 1. For an auction with a monotone allocation rule χ(b), the Myer-
son’s payment rule is

ρi(bi,b−i) =
∫ bi

0

zχ′
i(z,b−i)dz (1)

where bi denote the agent i’s bid, b−i the bids of the rest of the agents, and χ′
i

is the marginal allocation rule for bidder i.

Hence it is clear that we can calculate DSIC payments for agents given that we
have a monotone allocation rule which never decreases as the bidder increases
her bid. One economically fair way of allocating goods is giving it to the highest
bidder, or in other words, maximise the social surplus. Indeed, surplus maximi-
sation (SM) rule is monotone, because whenever bidder increases her bid, if it
beats the other bids, the surplus maximising algorithm will select this bid and
thus will increase the number of allocated items to this bidder. In case if it does
not exceed the other bids, the bidder’s allocation will remain unchanged. For
this reason, we will use SM as our main allocation rule in our simulation model.

In double auction and exchange environments, the SM involves the maximi-
sation of the utilities of buyers and sellers. We can define the utility for the agent
as follows:

Definition 2. For given agent i, her ex-post quasilinear utility is

ui(qi) = vi(qi) − pᵀqi (2)

where vi is the valuation function, qi is the allocation result of a bidder i, and
p represents the anonymous prices.

Thus utility function requires two types of outcomes from given mechanism: qi

the quantities allocated to agent i and p anonymous clearing prices. The agent
i will buy (sell) the item j if qij ∈ qi is positive (negative). So the quantities for
a pure seller will be all negative, and for a pure buyer positive. We will assume
that the valuation function vi(qi) will also reflect this relationship. Quasilinear
utility assumption also implies that agents are risk-neutral as it changes linearly
with no budget constraints. However, risk-neutrality in the context of option
pricing must not be confused. We will later assume that every agent will have
her own forecast on future price of an underlying asset (which might not be a
risk-neutral estimate) and evaluate her own option price based on this factor.
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2.2 Options

In this section, we will provide some basic notions about European options and
how they are priced. An option is a financial contract which provides to its holder
the right of buying or selling certain assets at an agreed future price (i.e. strike
price). The one who sells (writes) them takes the liability to fulfil buy or sell
requests in exchange for the premium he receives. European options are exercised
upon their maturity date. An option allowing its holder to buy is named a call
option, and allowing to sell is a put option [8]. Depending on the present value
of its strike price K and the current price of its underlying asset St, options
can be classified into Out-of-The-Money (OTM), At-The-Money (ATM) and In-
The-Money (ITM) options. The table below illustrates the types of options that
are traded in exchanges. We can also define the upper and lower boundaries for
option valuation in Eqs. (3) and (4).

For simplicity reasons, we will assume that the risk-free interest rate is zero,
so money has no time value. Also there is no friction in the market, so options
can be sold and bought at the same price without any transaction costs involved.

There is an established relationship between put and call options with the same
strike price and maturity date. This relationship results from the possibility of
buying the one and selling the other. Consider a case, when trader buys a call
option at K strike price, and at the same time sells a put option with K strike
price, and both have the same maturity T . In some sense, it seems that trader can
compensate the cost of a call option he bought for with the premium he received
for selling put. So on maturity date, ST turns out to be higher than strike price K,
so the trader can benefit profit as a difference of ST −K. However if ST appears to
be less than K, then trader has a liability to fulfil the put option that he sold, so he
incurs a loss of K−ST . This market position actually simulates a forward contract
which could be obtained for free. This type of contract is free because it involves
future possible liability or profit at the same time, so the risk for both parties is
even. Once the combination of put and call options can replicate the liabilities of a
forward contract, the prices for put and call options must hold the put-call parity
relationship: (c + K = p + ST ) [7]. Using the put-call parity relationship, we can
easily convert call prices to put prices, and vice versa.

3 Design of Exchange Mechanisms

In this section, we will propose design of a multi-unit multi-type direct DA auc-
tion for pricing options and provide some future perspectives on its implemen-
tation using CE settings. We will start with McAfee’s Single-Unit Single-Type
Double Auction and gradually reduce it to an option pricing DA and CE mech-
anisms. In both mechanisms, we comply with the Myerson’s lemma to make
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them DSIC, and thus the agent bids are equal to actual valuations (bi = vi).
Vector vi will represent the valuation of OTM, ATM and ITM call options by
trader i. We will describe how trader valuations are drawn from the distribution,
and used to determine the future forecast. We will also show an algorithm for
selecting option trading strategy (OTS) based on agent’s valuation vector. This
will determine how demand and supply quantities are formed in the market.

3.1 Valuations and Bidding

In DA mechanism, we will be running a two-sided auction where traders can
submit bids and asks to trade one type of option in multiple quantities. We
can run several DAs in parallel to determine the pricing of different types of
options independently from each other. Agents must represent their orders in
terms of two matrices: V = {vij ∈ R

+;∀i ∈ N,∀j ∈ G} for valuations, and
Q = {qij ∈ Z;∀i ∈ N,∀j ∈ G} for quantities requested.

Valuations are obtained from agent forecasts. We define agent i’s forecast on
the future price of underlying asset as a geometric Brownian motion without
drift. We have already made an assumption that risk-free rate is zero which
frees us from adjusting the prices for their time values. Below geometric process
defines how agents obtain their forecasts.

Si,T = S0e
(− 1

2σ2T+σWi,T ) ∀i ∈ N (5)

Every agent calculates her own values for call options, and also translates those
valuations to put options using put-call parity relationship mentioned earlier.
Call options will be calculated for different strike prices Kj . It will form a valu-
ation matrix V = {vij = (Si,T − Kj)+;∀i ∈ N,∀j ∈ G}.

For determining the quantities to be ordered for different types of options,
first we need to consider option trading strategies (OTS). These are common
combinations of options to be bought or sold in order to minimise the risk of
loss. OTSs are frequently, if not every time, used by traders in major real-world
option exchanges such as CBOT1, Eurex2, etc. Therefore we will assume that our
virtual traders will use the same strategies while trading in the market. OTS can
be represented as qi ∈ Q for agent i, as it shows the units of options to be bought
or sold. Some of the major OTSs, but not all of them, are listed in Table 1 where
the quantity of option type to buy or sell is specified in positive or negative
numbers respectively. The table also tells about the forecast direction of each
OTS, so agents can choose OTS based on their forecast. For example if agent’s
forecast is in between some S0 − ε ≤ Si,T ≤ S0 + ε, then agent will choose
neutral strategy. If Si,T > S0 + ε, then agent will choose bullish strategy. And
finally if Si,T < S0 − ε, the agent will choose bearish strategy. Traders pick
random strategy among strategies with same direction. However some OTSs can
be both bullish and bearish such as Long Straddle, so both bullish and bearish
1 Chicago Board of Trade, http://www.cmegroup.com/company/cbot.html.
2 Eurex Group, http://www.eurexchange.com/exchange-en/.

http://www.cmegroup.com/company/cbot.html
http://www.eurexchange.com/exchange-en/
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traders can be interested in this OTS. It is also possible that OTS is more bullish,
than bearish, and vice versa. For example, Strip generates greater payoff when
prices go up. Therefore there is a biased chance for a bearish trader to choose
Strip among other bearish OTSs because it is less bullish.

Table 1. Option trading strategies

Name cATM pATM cOTM pOTM cITM pITM Direction

Long Call 1 0 0 0 0 0 bullish

Long Put 0 1 0 0 0 0 bearish

Bull Call Spread 0 0 -1 0 1 0 bullish

Butterfly Put Spread 0 -2 0 1 0 1 neutral

Long Call Ladder -1 0 -1 0 1 1 neutral

Long Put Ladder 0 -1 0 -1 0 1 neutral

Iron Butterfly -1 -1 1 1 0 0 neutral

Long Straddle 1 1 0 0 0 0 bearish and bullish

Long Strangle 0 0 1 1 0 0 bearish and bullish

Strip 1 2 0 0 0 0 bullish > bearish

Strap 2 1 0 0 0 0 bearish > bullish

Also it is worth noting that we will regard option as ATM option if its strike
price Kj is in ε vicinity of current asset price S0. By definition of ATM option,
its strike price must be equal to the current asset price, but because we only
have discrete Kjs in price line, we have to take this assumption. Strike prices
beyond [S0 − ε, S0 + ε] are either considered OTM or ITM.

We name the algorithm for selecting OTS as a Strat(S0, Si,T ) function which
returns qi quantities to buy and sell. Thus the quantities matrix can be formed
Q = {qi = Strat(S0, Si,T ),∀i ∈ N}. Strat algorithm is defined below in
Algorithm 1.

Algorithm 1. OTS Selection Algorithm
Require: S0, Si,T , ε

if S0 − ε ≤ Si,T ≤ S0 + ε then
return random neutral OTS

else if Si,T < S0 − ε then
return random bearish OTS

else if Si,T > S0 + ε then
return random bullish OTS

end if

3.2 Multi-Unit DA

In this section we will gradually extend McAfee’s DA to a multi-unit auction,
and apply it for option pricing using OTSs. McAfee’s matching rule can be
written as a greedy algorithm which sorts bids b(1) ≥ b(2) ≥ · · · ≥ b(m) and asks
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a(1) ≤ a(2) ≤ · · · ≤ a(n) to satisfy k ≤ min(m,n) such that b(k) ≥ a(k) and
b(k+1) < a(k+1) [13]. This rule assumes that bids and asks are for a single-unit
of item. We can reformulate this rule to a LP problem defined below:

Definition 3. For a given vector of valuations v, McAfee’s SM allocation rule
for DA is

max
λ

∑
i

viqiλi (6)

s.t. λi ∈ {0, 1} ∀i (7)∑
i

qiλi = 0 (8)

where qi ∈ {−1, 1} represents sell/buy action by trader i, λi is an allocation
decision variable.

Theorem 1. Allocation rule (6) generates exactly same number of k efficient
trades as McAfee’s greedy matching rule.

Proof. Given that the the supply and demand is matched in constraint (8), we
can assume that the number of trades is m = (

∑
i λi)/2, hence we have to prove

m = k. Let’s assume that m < k, then it means that there is b(m+1)−a(m+1) > 0
and SM solver could add this difference to result greater surplus. So it is not
the maximum surplus, and there is a contradiction. Let’s assume that m > k,
then it would mean that b(m) − a(m) < 0, and SM solver would be better off not
including this match into allocation, as it decreases the objective. Hence there
is a contradiction in this case too. Therefore m = k. ��
We will use McAfee’s pricing rule to determine the clearing prices which conform
with Myerson’s payments.

Definition 4. For a given vector of valuations v, McAfee’s DSIC payment
rule is:

p =
{

p0 if p0 ∈ [a(k), b(k)]
p1 otherwise

where
p0 = (b(k+1) + a(k+1))/2, p1 = (b(k) + a(k))/2
b(k+1) = sup(vi;λi = 0, qi = 1,∀i) a(k+1) = inf(vi;λi = 0, qi = −1,∀i)
b(k) = inf(vi;λi = 1, qi = 1,∀i) a(k) = sup(vi;λi = 1, qi = −1,∀i)

McAfee mechanism rejects b(k) and a(k) match when the clearing price is p1, and
thus it looses one efficient trade. This efficient trade makes the least portion of
the overall surplus. However this makes the mechanism DSIC, individual rational
and budget-balanced for single-unit single-type bids and asks. It is individual
rational because whenever the p0 exceeds the boundary of [a(k), b(k)], it uses
p1 price which is always in between the winning bid-ask spread. It is budget-
balanced because it uses anonymous prices to clear the market along with fully
matched supply and demand.
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From the valuation of options (see the definition of matrix V ), we know that
traders value call options in monotonic strictly increasing function of their pri-
vate prediction Si,T . Then we can use Revelation Principle to convert McAfee’s
DSIC mechanism to another DSIC mechanism, let us name it Predictions Match-
ing (PM) mechanism where traders disclose their private predictions to the mech-
anism designer, instead of submitting their valuations for every option. Hence we
can find the aggregated predictions of asset price ST at the maturity of option.
Mechanism then can use this aggregated prediction to determine the price for
any type of option, and clear the market. Also this would restore the lost infor-
mation about predictions on the valuation of OTM calls, as they are valued zero
if agent’s prediction is below option’s strike price.

Now let us extend McAfee’s mechanism to multi-unit mechanism. For sim-
plicity sake, we will assume that bids (asks) bi = Si,T are agent i’s prediction of
asset prices at T . Then consider multi-unit bid as a tuple (bi, qi). We can split this
tuple into set of same-valued bids bi =

⋃qi
t=1 bi,t where bi,t = bi,t′ ,∀ = t, t′. This

can be done to asks as well. Then we will have complete set of bids b =
⋃n

i=1 bi

and asks a =
⋃n

i=1 ai. We can use single-unit McAfee’s mechanism mentioned
above to find SM allocation, and DSIC payments. However, we can observe
below that not all bids/asks can be fully satisfied. If the bids are atomic then
the mechanism will loose the efficiency from discarding partially satisfied bids.
In case of OTS based bids, we assume that bids are indivisible, so the mechanism
has to either satisfy fully or discard the bid. Moreover, by discarding the par-
tially satisfied bids, mechanism also incurs into the cost of covering the exposed
asks which has been matched to discarded bids. So it will make the mechanism
not budget-balanced.

Lemma 1. In extended multi-unit McAfee’s mechanism, there exists at most
one multi-unit bid/ask which is partially satisfied, and the remaining winning
bids/asks are fully satisfied.

Proof. Let us assume that we use McAfee’s single-unit DA matching rule for
expanded set of bids b and asks a. Then we should have some k such that
b(k) ≥ a(k) and b(k+1) < a(k+1). We can also claim, without loss of generality, that
there is a bid bi such that b(k), b(k+1) ∈ bi. This would imply that b(k) = b(k+1).
However, it cannot be a(k) = a(k+1) because it contradicts b(k+1) < a(k+1).
Hence, a(k) and a(k+1) belong to different asks, and it must be the case that
the multi-unit ask which owns a(k) is fully satisfied, and so do other preceding
winning multi-unit bids and asks. ��
Using Lemma 1, we can formulate an LP problem for SM allocation of multi-
unit bids and asks. This would involve changing decision variable from binary
to continuous λi ∈ [0, 1]. Below is the definition.

Definition 5. For given vectors of predictions and quantities (ST ,q), SM allo-
cation rule for Multi-Unit DA is
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max
λ

∑
i

qiλiSi,T (9)

s.t. λi ∈ [0, 1] ∀i (10)∑
i

qiλi = 0 (11)

where qi ∈ Z represents quantities, Si,T is the agent’s prediction, λi is an allo-
cation decision variable.

Given that the bids and asks are atomic, mechanism discards the partially satis-
fied bid/ask and covers the cost of exposed winning ask/bid. In this way, mech-
anism looses one partial multi-unit efficient bid. Without loss of generality, let
us set bl as the partially satisfied bid, and this implies the fact b(k) = b(k+1)

shown in Lemma 1. We can use p0 defined in Definition 4 as long as it is within
the bounds of winning bid-ask spread. However, mechanism has to reject both
least winning multi-unit bid and ask, if p0 exceeds the bounds. This may expose
preceding bid bl−1 to be partially satisfied. Then mechanism will cover the cost
of fully satisfying bl−1. The key difference in between the actions of mechanism
for partially satisfied bids bl and bl−1 is that it rejects the former, and covers
the latter. In other words, the mechanism is responsible for covering the costs
of rejecting the efficient trades. Rejecting both bid and ask at the edge would
allow us to use them to compute the clearing price p1 defined in Definition 4.
As a matter of note, by p0 and p1 we mean not the price of an option, but the
estimated predications ŜT which can be used to determine the intrinsic value of
any option.

Theorem 2. Multi-Unit DA is DSIC, individual rational and at most looses
one efficient multi-unit trade.

Proof. Mechanism is DSIC is because it follows the Myerson’s lemma, as it has
monotonic SM allocation rule and its payment is the critical value of winning bids
and asks. It is individual rational because it uses p0 when it does not exceed the
winning bounds. It discards efficient trade and use its prices to obtain p1 when
individual rationality bounds exceeded. There is only one case when mechanism
discards both efficiently matched bid and ask, and this case is when the average
of offsetting bid and ask is not individual rational. Therefore it approximates
the efficiency of the mechanism up to a single efficient multi-unit trade.

As we have already mentioned, mechanism is not budget-balanced, and it may
generate negative cash flow. However, we will closely examine how it progresses
over the time if mechanism is allowed to keep record of its cash flows and inven-
tory. For example, if mechanism discards partial multi-unit bid, then it will need
to satisfy the exposed ask by buying out the remaining options. Mechanism then
can use these bought options to satisfy exposed bids later in the time frame. For
instance, when mechanism ends with over-supply having multi-unit ask partially
satisfied. Mechanism will take options from its inventory to satisfy exposed bids.
Below Algorithm 2 summarises the Multi-Unit DA:
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Algorithm 2. Multi-Unit DA
Require: ST ,q

Determine SM λ
Discard λl bid or ask
Calculate p0 and p1

if p0 ∈ [bk, ak] then
Clear the market with p0

else
Discard remaining bid/ask at the edge
Clear the market with p1

end if
if Has inventory(cash) to cover exposed bid(ask) then

Cover the exposed bid(ask) from inventory(cash)
else

Cover the exposed bid(ask) at mechanisms cost, update inventory(cash).
end if

3.3 Multi-item Multi-Unit DA

In this section, we will extend our Multi-Unit DA further to accommodate multi-
item bids and asks as well. In options case, traders would be interested in taking
OTSs and this would involve different types of options such as OTM call, ATM
put etc. We have defined several commonly used OTSs as a potential candidates
for multi-item bids in Sect. 3.1. We will model a mechanism which is based on our
previous multi-unit DA which also allows trading multiple heterogeneous items.

We will consider 2 cases of markets: multi-unit multi-item DA where traders
can disclose their linear valuations of options to market maker; and CE where
traders only disclose their valuation for the bundle. In both cases, traders would
want to have their bids satisfied fully. In this multi-unit multi-item DA setup,
we will have valuation and quantities matrices (V,Q) to represent the trader
preferences. And in CE setting, traders will define their preferences as a tuple
of valuation vector and quantities matrix (v, Q). We will again use Revelation
Principle to turn option valuations into predictions in both cases, once we assert
that both mechanisms are DSIC for valuations.

Let us consider several multi-unit DAs run in parallel for different items.
Traders can simultaneously participate in all of them. In such setup, the overall
SM outcome can be viewed as the sum of SM outcome for each DA. So let us
construct LP allocation rule for this mechanism:

Definition 6. For given valuations and quantities (V,Q), SM allocation rule
for multi-unit multi-item DA is

max
λ

∑
i

∑
j

vijqijλij (12)

s.t. λij ∈ [0, 1] ∀i ∈ N,∀j ∈ G (13)∑
i

qijλij = 0, ∀j ∈ G (14)

where λij determines the allocation of each option to each trader.
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However it follows from Lemma 1 that there will be at most G number of partially
satisfied bids/asks and the mechanism has to discard those multi-unit multi-item
bids/asks in order to avoid traders partially executing their corresponding OTSs.
It can use the same pricing method per option type as it has been described for
multi-unit DA. Hence it can also inherit DSIC and individual rationality from
multi-unit DA.

In CE mechanism, the valuations come for bundles and are usually expressed
through indirect means such as bidding languages because communicating the
valuation for all combination of possible bundles is exponentially large amount
of data which requires much memory and computing resources to process. Nisan
provides a good analysis of existing bidding languages [10] used in combinatorial
auctions. But in order to avoid this complexity, we will assume that the trader’s
combinatorial bid space is a predefined list of OTSs and the trader can only
choose one of them to participate in CE. Also, like in previous cases, trader
want his OTS fully satisfied. In this way, we can represent traders preferences
using one valuation vector v = {vi ∈ R;∀i ∈ N}, and one quantities matrix Q =
{qij ∈ Z;∀i ∈ N,∀j ∈ G}. If bidders use linear valuations for combinatorial bids,
the CE problem can be reduced to multiple DAs. In case of options, the value of
OTS is calculated through summing up the elements of the OTS. Moreover, every
options’ intrinsic value is dependent only on agent i’s prediction Si,T . Hence,
mechanism designer can determine agent’s prediction from the OTS value and
quantities she submits. Below is the formula for calculating the value of OTS:

Definition 7. If odd j represents call option, and even j represents put option,
the linear value of OTS for agent i is

vi =
∑

j

((−1)j+1(Si,T − Kj))+qij (15)

Given all variables except Si,T , the mechanism designer can numerically solve the
Eq. (15), and find corresponding Si,T for every bidder. Then mechanism designer
can use Revelation Principle to find estimated prediction ŜT for calculating the
individual prices of options. Below is the transformation of Definition 6 to a PM
mechanism:

Definition 8. For given predictions and quantities (ST , Q), SM allocation rule
for multi-unit multi-item DA and CE is

max
λ

∑
i

∑
j

qijλijSi,T (16)

s.t. λij ∈ [0, 1] ∀i ∈ N,∀j ∈ G (17)∑
i

qijλij = 0, ∀j ∈ G (18)

where λij determines the allocation of each option to each trader.

It can be noted that allocation of G options will result at most G number of par-
tially satisfied bids/asks. This would mean that we will have at most G estimated
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predictions ŜT for every type of option. In order find the clearing estimated pre-
diction we can calculate the weighted average of ŜT by trade volume. In other
words, we can have ŜT adjusted based on the bullishness and bearishness of
traders. This is the key part of our experiment, to observe how the use of OTSs
may result in the change of overall estimated predication. We will provide series
of experimental results to test this effect.

As a matter of caveat, we also admit that OTS can be valued in non-linear
fashion, and options can be substitutes or compliments. In case if they are sub-
stitutes, then it has been shown by Roughgarden [2] that the above mecha-
nism will beat the surplus produced from substitutes, and hence can be used
to determine the SM allocation for combinatorial bids with substitute goods.
However it is much more complex task and out of the scope of this paper to
design a mechanism where goods are compliments, as it would require iterative
rounds of price discovery and package bidding. Also it is important to note that
options can be compliments and there is enough evidence to assert this assump-
tion. There is an established phenomenon called volatility smile which exhibits
abnormally higher prices for OTM options in major derivatives markets, whereas
their intrinsic value is zero [8]. They can even be valued higher than ATM
options. This forms a convex parabola for implied volatility as the strike price
increases. Implied volatility can be calculated through finding the root of Black-
Scholes formula for volatility σ using the resulted option price and other known
parameters.

4 Experimental Setup and Results

We will conduct series of experiments to see how estimated predictions, and
consequently the option prices change in multi-unit DA and CE mechanisms.
In first set of experiments with multi-unit DA, we will simulate asset prices as
Brownian process, and then use it for different market settings defined below:

– Vol=Vol, Supply=Demand: In this setting the real asset price volatility, and
the implied volatility for agents are the same. Also supply and demand scalers
are taken from a random variable �15 ∗ z
 where z ∼ N (0, 1). This balances
the supply and demand the market around zero.

– Vol=Vol, Supply > Demand : The same as above, except supply and demand
scalers are taken from �15 ∗ z−5
 where z ∼ N (0, 1). This balances the market
around 5 oversupply.

– Vol=Vol, Supply < Demand : The same as above, except supply and demand
scalers are taken from �15 ∗ z+5
 where z ∼ N (0, 1). This balances the market
around 5 overdemand.

– Vol �= Vol, Supply=Demand: The same as above, except implied volatility
of traders differ around real asset price volatility with lognormal standard
deviation of 0.5.

We fix several other parameters for the experiment. For example, options have
constant strike prices throughout the timeline. This means that agents will trade
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Table 2. Parameters of the experiment

Name Value Name Value

Initial Asset Price S0 = 100 Random Quantities Scaler Range [-15, 15]

Strike Price K = 100 Shift in Supply/Demand per Agent 5

Deviation from Strike price ε = 10 Random Implied Volatility Mean 0

Asset Price Volatility σ = 0.05 Random Implied Volatility St.D 0.5

Risk-free rate r = 0 Number of agents N = 100

Time to maturity T = 100 Number of option types G = 6

Number of tests per mechanism w = 30

Fig. 1. Call and put prices from multi-unit DA mechanism and Black-Scholes model

only with predefined set of options at the beginning of the simulation, and no
new type of option with new strike price will enter the market. Also option
maturity date will be constant, and it will approach its maturity date through
the timeline of the simulation. Asset price volatility will also be fixed (Table 2).

In Fig. 1 we can see estimated predictions change when implied volatility,
supply and demand are different. It illustrates that multi DA mechanism can
effectively simulate Black-Scholes prices, as long as the implied volatility is the
same as the asset price volatility, and supply and demand are equal. However we
can see that call prices drop blow Black-Scholes model when the supply exceeds
demand, and vice versa. We can also observe that randomised implied volatility
around real asset price volatility can better approximate option prices.

Another set of experiments reveals the key aspect of the research exhibiting
the effect of OTSs on estimated predictions. In this experiment we simulate
CE mechanism, and calculate the estimated predictions as weighted average of
estimated predictions obtained for different option types through simultaneously
executed multi-unit DAs. In this set, we consider following cases:
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Fig. 2. Call and put prices from CE mechanism and Black-Scholes model

– Balanced Bullish, Bearish and Neutral Traders: In this setup, traders use
OTSs equally having balanced quantities for every OTS.

– More Bullish Traders: Traders use more bullish OTSs compared to other OTSs.
– MoreBearishTraders: Traders usemore bearishOTSs compared to otherOTSs.
– MoreNeutral Traders: Traders use more neutral OTSs compared to other OTSs.

Figure 2 illustrates the estimated predictions obtained from simulating CE mech-
anism where traders use OTSs to interpret their predictions. It also shows
the corresponding option prices compared to Black-Scholes model. As it was
expected, we can observe that estimated predictions are higher when traders are
more bullish, and lower if they are more bearish. Also we can see that estimated
predictions stick up well with the asset prices when traders are more neutral.
This clearly shows that option prices are affected by the choice of OTSs in the
market, although OTS is not purely a buy/ask order, but it is mixed combination
of bids and asks for particular options.

As we have already mentioned, proposed mechanisms are not budget-balanced
and it is worthwhile to view how they yield loss and profit from covering the
partial bids/asks of rejected traders. Figure 3 shows the accumulated cost and
revenue for multi-unit DA and CE mechanisms.

It can be seen from the Fig. 3 that in cases of oversupply in multi-unit DA
or more bullish traders in CE the revenue of the mechanism is soaring, because
there are fewer bids than asks, and the mechanism always ends up partially
satisfying some seller. As a result it rejects that seller, and takes its role of
selling options to exposed bidder. Hence it increase its revenue day after day.
The opposite phenomena happens when there are more bids than asks, and
mechanism has to spend money on behalf of rejected bidder to buy out exposed
ask. Mechanisms are somewhat stabilised around zero when the balance of supply
and demand is maintained. Also it is interesting to observe that in CE, the
mechanism revenue/cost is more volatile and enormous because the volumes of
options traded are at least G times bigger.
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Fig. 3. Cost/Revenue for multi-unit DA and CE mechanisms

5 Concluding Remarks

In this paper, we have gradually designed two important mechanisms (multi-unit
DA and CE) based on McAfee’s description of single-unit DA. Although designed
mechanisms are not budget-balanced, we have proved that they are DSIC, indi-
vidual rational and approximately efficient. We have used these mechanisms to
price options where traders not only bid in price and quantities, but also apply
various commonly used OTSs to minimise their risks. The experiments gave
us results where demand and supply can also affect the option prices, and more
importantly, we saw that the OTSs have a considerable impact in forming option
prices. We have also highlighted the revenue and cost of the mechanisms under
various scenarios, and found out that mechanism is stable as long as the supply
and demand in the market are balanced.
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