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Abstract. In finance, one of the cornerstones of pricing any derivative contract
is the no-arbitrage theory where derivatives such as options are priced according
to the risk-neutral measure using the seminal Black-Scholes formula. However
this model disregards the market sentiment expressed through investor’s demand
or supply on such derivatives. Option portfolios such as bullish, bearish or but-
terfly spreads are commonly traded bundles of options which signal the trader’s
prediction on the future price of an underlying asset. In this paper, we depart
from the traditional no-arbitrage principles of option pricing and apply Parkes et
al. Iterative Combinatorial Exchange (ICE) for trading option portfolios where
traders can express their market sentiment via their combinatorial preferences for
different options. We express different option portfolios using Tree-based Bid-
ding Language (TBBL) and use corresponding Winner Determination Problem
(WDP) along with the Threshold payment rule to compute the clearing prices for
any given option portfolio. Moreover, we extend TBBL to incorporate spreads of
all types, so the responsibility of compiling an option portfolio shifts to a mech-
anism rather than to a trader.

Keywords: Application of Combinatorial Exchanges, Bidding Languages, Fi-
nancial Markets and Derivatives

1 Introduction

In finance, option is a contract that gives the right of buying (selling) certain asset at an
agreed future price (i.e. strike price) to its holder. The issuer of such contract charges
a premium from the holder to compensate the future liability that he may incur. Holder
of the option can exercise his right on a agreed period of time. For example, European
options can be exercised only on their maturity date, while American options on any
date until the expiration of the contract. We will use only European options in the scope
of this paper.

Options constitute significant part of modern financial trades, and are priced ac-
cording to the risk associated with buying or selling an underlying asset in future. In
finance literature such risk is evaluated from an arbitrage-free perspective where no
financial contract can yield riskless profit to its holder. The seminal works by Black
and Scholes [2], and Merton[9] established a solid framework for pricing derivative
contracts such as options and derived a closed-form solution for computing the risk-
neutral value of any European option. However, according to the survey of empirical
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data and the contemporary methods of option pricing accomplished by Bates[1], the
parametric models such as Black-Scholes formula cannot fully capture the ”financial
inter-mediation of the underlying risks by option market-makers”. In Black-Scholes,
options are priced with a constant volatility (variance) of an underlying asset in mind.
However, empirically speaking, the emergence of a volatility curve for options suggests
the opposite where implied volatility is changing and options are valued differently
depending on their moneyness (Out-of-The-Money (OTM), In-The-Money (ITM) and
At-The-Money (ATM)) options. Most of finance literature models this phenomenon via
stochastic variance [7] or via other frictions and jumps in the market. This would lead us
to an idea of pricing options in such way which would cover the whole spectrum of op-
tion moneyness in single process. This becomes possible when traders can express their
combinatorial preferences for option portfolios spanning options from different money-
ness range and obtain competitive equilibrium prices for them through a combinatorial
exchange.

The ICE presented by Parkes et al. is an expressive and a complete mechanism stem-
ming from earlier works accomplished in combinatorial auctions [5] involving such
concepts as price discovery and activity rules. Its bidding language TBBL generalises
the expressiveness and completeness of multiple bidding languages such as OR, XOR,
etc proposed earlier for combinatorial auctions [10]. Its efficiency can be asymptotically
approximated with the number of goods or traders participating in the mechanism. Its
payment rule is budget-balanced, and most importantly Dominant Strategy Incentive
Compatible (DSIC) and individual rational. However similar to combinatorial auctions,
its WDP is NP-hard as it can be directly transformed into set packaging problem.

The paper shows the novel application of combinatorial exchanges in the market
of financial derivatives, namely, options. We use Parkes et al. [11] ICE as a reference
model for the design of a combinatorial exchange and use its TBBL [3] to enable the
structured bidding of option portfolios. We define cases where options could be seen as
complements and substitutes, and on the basis of this definition use combinatorial ex-
change to evaluate their prices. We also provide examples on different ways of express-
ing commonly known option portfolios using TBBL. Moreover, we suggested using
TBBL for expressing the generic structure of different types of option portfolios such as
spreads, ladders, straddles, etc. By expressing the option preferences in a generic way,
traders can shift the burden of compiling the most efficient option portfolios matching
with their choice of option portfolio type to the mechanism itself thanks to direct rev-
elation principle. On the other hand, the mechanism will satisfy more combinatorial
orders because of its freedom to match options with different strike but with the same
moneyness.

2 Preliminaries

Option’s value depends on several parameters of the underlying market and the con-
ditions written in the contract such as strike price K and asset’s spot price St. Option
belongs to different moneyness range depending on if its strike is greater or less than the
current asset price. Put option (i.e. an option that gives right to sell at an agreed price
in future) is said to be if its strike price is below the market’s price, if it is above the
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market price and if it is equal to the market price. Call option (i.e. an option that gives
right to buy at an agreed price in future) is said to be Out-of-The-Money (OTM) if its
strike price is above the market’s price, In-The-Money (ITM) if it is below the market
price and At-The-Money (ATM) if it is equal to the market price. Table 1 summarises
the options by moneyness.

Table 1: Options by Moneyness
OTM ATM ITM

CALL K > St K = St K < St
PUT K < St K = St K > St

Fig. 1: Bull Spread with Call Options

Most of the option portfolios, except calendar option portfolios, are made using
options with different moneyness to cut the risk of infinite loss, and take advantage
of agent’s future forecast. For example, if bullish trader hopes that the asset price will
increase. Therefore he buys one ITM call option at c1 with strike priceK1 and sells one
OTM call option c2 with higher strike priceK2. Both options have same expiration date.
Because K2 is higher than K1, c2 should be lower than c1. If the asset price becomes
less than K1, trader will loose c2 − c1. If the asset price falls between K1 and K2, then
trader’s payoff is the difference between current price ST and K1 minus the difference
in option prices. Bullish trader wants the asset price to go up, so he can make fixed profit
of K2 −K1 minus the difference in option prices. The same bull spread can be made
with put options as well, so the trader buys put with low strike price and sells another
put with high strike price. Payoff for bull spread with call options is written below (1):

P =


c1 − c2 if ST ≤ K1

ST −K1 − (c1 − c2) if K1 < ST < K2

K2 −K1 − (c1 − c2) if ST ≥ K2

(1)

where c1 > c2 and K1 < K2. Figure 1 illustrates bull spread with call options.

3 Substitutability and Complementarity of Options

The substitutability and complementarity of options are not defined in financial liter-
ature. In a risk-neutral and frictionless world, option is a contract which mimics the
payoff function of a delta-hedged portfolio. Therefore its value is nothing but the value
of that replicating portfolio which consists of cash and assets [8]. As long as the cash
and assets are identical and anonymously priced, the options on top of them can be
priced according to the same parameters which are invariant. This would mean that ev-
ery option has uniquely defined price which is risk-neutral compared to the conditions
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of the underlying market. Once the supply and the demand are not involved in pric-
ing the options, the economic concepts such as cross-demand (cross-supply) elasticity
XDE (XSE) which define substitutability (i.e XDE is positive) and complementarity
(i.e. XDE is negative) of goods are also disregarded in option market. However as we
introduced the market component into the option pricing methodology, and determined
the option prices using the supply and the demand for options, then the question of
XDE and XSE may naturally arise in studying the substitutability and complementarity
relationships between different options.

For example, let us consider a case where options can be viewed as substitutes.
There is a bearish sentiment (i.e. the asset price is expected to fall) in underlying market
and majority of option traders wish to take bearish spread which consists of buying
one OTM call and selling one ITM call. However traders have multiple choices for
OTM calls with different strikes. If over-demand is assumed to be the main reason for
the rise of OTM call prices, then for some OTM if the price remains the same, the
traders would be willing to buy it at cheaper price compared to other OTMs. This, as a
result, would increase the demand for this option. Hence OTM options are substitutes
in bearish spread.

Another aspect of goods as substitutes is the unwillingness of the traders buying
two substitute items simultaneously. Using our previous example, trader willing to take
bearish spread does not want to buy two OTM options having sold only one ITM. This
would distort his option portfolio and change its payoff function. In given example,
trader can have a valuation as v({OTM1, OTM2}) = v({OTM1})⊕ v({OTM2}),
because he wants to buy only one OTM, so he pays only for one option allocated to him
and takes the second one for free. Let us assume that out of multiple OTMs allocated
to the trader, it is for the cheapest OTM he pays. So his valuation function is, indeed,
v({OTM1, OTM2}) = min[v({OTM1}), v({OTM2})]. This is definitely smaller
than their combined valuation, so according to the definition of substitutability given
below (2), these two options OTM1 and OTM2 are substitutable for the trader who
wants to take a bear spread.

v({OTM1, OTM2}) ≤ v({OTM1}) + v({OTM2}) (2)

In order to understand the complementarity of options, let us consider the trader
who wants to take bullish spread. In this case, the trader needs to buy one ITM call,
and sell one OTM call. We know that the ITM costs more than OTM, so the trader’s
linear price of this contract is v({ITM,−OTM}) = v̂({ITM})− v̂({OTM}) ≥ 01.
However the trader is determined to take bullish spread, and considers no other choice.
So this would mean that if the trader gets allocated with either one of the options, but
he is refused for the other one, his bid for ITM is zero, and ask for OTM is infinity. In
other words, both v({ITM}) = 0 and v({−OTM}) = ∞ is true. Hence we know
that v({ITM}) − v({−OTM}) < 0, we can derive an inequality given below which
defines the strong complementarity of goods.

v({ITM,−OTM}) > v({ITM})− v({−OTM}) (3)

1 Minus sign means short position. v̂(·) is the intrinsic value of the option for the trader, not the
reported one.
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To sum up, the traders engaged in taking option portfolios may exhibit a valuation
behaviour which makes OTM options (and ITM options by symmetry) with different
strikes mutually substitutable. Also we have seen that ITM and OTM options could be
complements to each other when they are wanted as an integral part of an option port-
folio. Once we can establish such relationships between options, there is an immediate
necessity for a combinatorial exchange which can accept such preferences from traders
and efficiently allocate them to winning traders. We propose a design of such combina-
torial exchange that can deal with the substitutability and complementarity of options
inside option portfolios.

4 Design of Combinatorial Exchange

There are two ways of looking at option market for traders using option portfolios. First
way is looking at the market as a multi-unit multi-item double auction where traders
simply submit their orders for each option separately and then once their orders satis-
fied, they hold a certain option portfolio. We can also consider this case as simultaneous
multi-unit double auctions run in parallel for different types of options. Cramton [5] de-
scribes an issue for simultaneously ascending auction where traders had an incentive
to snipe in an auction which bid the least price. In order to prevent bidders engaging
in sniping, the auction introduced set of activity rules into its protocol. One of them
was not to allow bidders increase their volumes as the price goes up, as it contradicts
to the law of demand. Not imposing such activity rule would allow bidders to put a bid
with an insignificant volume to stay active in multiple simultaneous auctions until the
last moment when the trader put all his required volume into the cheapest auction and
wins the lot. Once the activity rules are applied, the mechanism can produce surplus
maximised outcome and hence be efficient.

However, the second way of dealing with option portfolios is matching them in a
combinatorial exchange. In this way, traders may not reveal their individual valuations
of the options to the mechanism. Also traders are not required to coordinate their bids
and asks in multiple auctions to make sure that their option portfolio is compiled. In
more general perspective, combinatorial exchange allows the traders to express much
more information other than simple quotes on options or option portfolios they want.
In fact, in combinatorial exchange traders can reveal their whole strategy, or bearish or
bullish beliefs, to allow the mechanism to decide which option portfolio one needs in
order to maximise his utility. In combinatorial exchanges the problem of finding best
allocation and computing DSIC payment rule can be translated into set packaging prob-
lem which is NP-hard. This problem can be easily tackled with simultaneous multi-unit
double auctions (SMUDA) if goods-are-substitutes because the surplus maximised al-
location of goods in SMUDA sets the upper-bound for a combinatorial exchange [12].
However the combinatorial exchange allocation becomes NP-hard when the goods-are-
complements, and SMUDA cannot produce better surplus maximisation. With this out-
come, the implementation of a combinatorial exchange for option portfolios can be
justified.

We propose the design of a combinatorial exchange for trading option portfolios
using Parkes et al. [11] ICE as a reference model. We use TBBL to specify the prefer-
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ences of option traders. Then we formulate the WDP and payment rules. Let us specify
the notation we used for denoting traders, options, allocations etc:

N = {1, . . . , n} is the set of traders
G = {1, . . . ,m} is the option types listed in the option chain
x0 = (x01, . . . , x

0
n) is the the limits for traders in selling options. x0i = (x0i1, . . . , x

0
im)

where x0ij ∈ Z+ is the limit for each trader to sell particular type of option. This
limit can be imposed by the margin account of the trader, or by the company’s pol-
icy, or as we did in previous chapters, by the mechanism itself. Hence these limits
are the quantity cap for the maximum number of options a trader can sell.
λ = (λ1, . . . , λn) denotes the change in the allocation of options (i.e. trade), while
each λi = (λi1, . . . , λim) and λij ∈ Z. So λij is the change in agent i’s jth option
account, negative number meaning the sales, and positive the acquisition.
M =

∑
i∈N

∑
j∈G x

0
ij is the maximum number of options that could be traded in

the combinatorial exchange.

4.1 Efficient Trades

For each possible trade for the agent i, we can define valuation function vi(λi) ∈ R
which denote how much the trader is willing to pay or receive for given set of trades
in λi. Using our previous example, if the trader wants bearish spread only, then his
valuation for OTM options should be vi(λOTM ) = infλij>0,j∈λOTM

(vi(λij)), as he
considers the OTM options as substitutes. Let us denote the final position for the trader
i as x0i +λi ≥ 0 which would mean that the agent’s capacity decreases as he sells more
options, and it should not exceed the given cap x0i .

We use the free disposal assumption so vi(λ′i) ≥ vi(λi)→ λ′i ≥ λi,∀j λ′ij ≥ λij
is true. Also let us denote the overall surplus from the trade as v(λ) =

∑
i vi(λi).

Traders use quasi-linear utility to evaluate each trader: ui(λi, p) = vi(λi)− p where p
is the price paid for the trade λi. The quasi-linearity of utilities guarantee that any Pareto
improvement to the allocation maximises the social surplus, so for the given profile of
valuations and caps (v, x0), we can define a Pareto improvement, or an efficient trade
as λ∗ such that

λ∗ =argmax
λ

∑
i

vi(λi) (4)

s.t. λij + x0ij ≥ 0, ∀i,∀j (5)∑
i

λij = 0, ∀j (6)

λij ∈ Z

Constraint (5) is used to enforce the cap of the mechanism in the volume of options
traded, and in (6) the strict budget-balance is enforced through the free-disposal as-
sumption. This would mean that the unwanted options could be freely allocated to
traders. For example, if the bearish spread taker considers OTMs as substitutes, and
pays only for the cheapest one, in case if the mechanism allocates the trader 2 OTM
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options, it is acceptable that the trader pays for only one option, and gets the other one
for free.

It can be seen from the formulation of the efficient trade that the mechanism is aware
of the caps for each trader. This is plausible because the traders participating in deriva-
tives market maintain margin accounts which are continuously marked to the market
by the broker as the market changes [8]. Hence the mechanism knows the capacity of
each trader to issue options. Let us denote any feasible set of allocations for given x0 as
F(x0), and let the any feasible set of allocations for trader i as Fi(x0).

4.2 Bidding Language

is specifically designed for combinatorial exchanges by Cavallo et al. [3,11] and it can
be used to express option portfolios as combinatorial bids to the mechanism. This lan-
guage is fully expressive, and designed to be as concise and structured as possible.
Because it is specifically designed for combinatorial exchange, it allows bidders to sub-
mit bids and asks simultaneously. The tree structure is used for expressing bids and asks
connected through series of generalised logical connectives, such as ’interval-choose’
(ICyx) operator. It specifies at least x and at most y of its child nodes must be satisfied.
Hence, all intermediate nodes in Tree-based Bidding Language (TBBL) are ICyx nodes
with corresponding price bounds. ICyx can replicate OR as ICn1 , XOR as IC1

1 and AND
as ICnn . The leaf nodes of the TBBL are the actual bids or asks on options.

For example, trader is taking bullish spread, so he can submit following bid which
generates positive cash flow if price goes up. Figure 2 shows how it can be represented
in tree format, where each node has its own value, and plus sign implies bid, and minus
ask. This shows that the trader is willing to buy call at strike $90 for $10, and (i.e.
IC(2, 2)) sell call at strike $110 for $5. We implicitly assume that the current asset
price is S0 = $100, hence first call is ITM, and the second call is OTM. Similarly, the
trader is also indifferent to buy the same bull spread with puts. Trader states that he
wants to sell OTM put at strike $90 for $5 and buy ITM put at strike $110 for $10. Both
spreads are evaluated at the price of $5 for the trader.

Fig. 2: Bullish spread expressed using TBBL

The important aspect of an above bidding structure displayed in Figure 2 is that the
trader can express the bull spread both in terms of calls or puts. This gives him the flex-
ibility in choosing equivalent option portfolios among possible allocations, and fully
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express his preferences to the mechanism. This is a great advantage of a combinatorial
exchange over a double auction, because in this example bullish spread taker can fully
reveal his indifference to trading various sets of options, as long as they make equivalent
portfolios and generate the same payoff. In other words, instead of expressing his quotes
to individual options as it was normally done in double auctions, in combinatorial ex-
change the trader is now capable of expressing his entire strategy to the mechanism.
It is important to note that the combinatorial exchange is DSIC 2, and the traders are
always better off revealing their true strategy to the mechanism. Complete revelation of
trader’s strategies consisting of option portfolios also provides more allocation choices
to the mechanism.

Every trader i can submit bid Ti. Let θ ∈ Ti denote any node in the tree, and
vi(θ) ∈ R is the value of this node for bidder i. A function Leaf(Ti) ⊂ Ti returns all
leaves of bid Ti, and Child(θ) ⊂ Ti returns all child nodes inside node θ. Any node θ
is said to be satisfied by ICyx(θ) if:

– R1: Node θ with ICyx(θ) may be satisfied if only at least x and at most y of its
children are satisfied.

– R2: If some node θ is not satisfied, then none of its children may be satisfied.

Let G ∈ {1, . . . ,m} represents the options listed in the option chain. Let λi ∈ Z be
the vector representing which option to take and which option to give for bidder i, or in
other words a trade, or an allocation. Then the value vi of the allocation λi for bid Ti
is equal to the sum of all satisfied nodes. In order to represent satisfaction, let us define
sati(θ) ∈ {0, 1} function which represents if θ ∈ Ti is satisfied. Valid set of solutions
for Ti can be derived through applying R1 and R2 to all internal nodes of Ti, such that
θ ∈ {Ti\Leaf(Ti)}. Hence for ICyx(θ) following condition should hold:

xsati(θ) ≤
∑

θ′∈Child(θ)

sati(θ
′) ≤ ysati(θ) (7)

Secondly, we also do not want for any given trade λ, the number of options supplied
is less than demanded. So we can write this constraint as follows:∑

θ∈Leaf(Ti)

sati(θ) ≤ λij ,∀j (8)

So the rules R1 (7) and R2 (8) form the validity function valid(Ti, λi) for a given
bid tree Ti and allocation λi. This validity function returns the mapping for the satisfia-
bility of each node θ in Ti under given λi. Hence we can right the satisfiability function
as sati ∈ valid(Ti, λi).

The valuation of the given tree Ti holds free disposal rule where unsold options can
be freely allocated to any bidder. With given constraints we can formulate a valuation
function for given bid Ti,

vi(Ti, λi) = max
sati

∑
θ∈Ti

vi(θ)sati(θ) (9)

s.t. (7) (8) (10)
2 See Parkes et al. [11] for proof.
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4.3 Winner Determination

We formulate in the form of an Integer Linear Programme (ILP) using the TBBL for
a combinatorial exchange. This finds the efficient set of allocations λ for the given
capacity x0 in the combinatorial exchange. Let us define T = (T1, . . . , Tn) as the
TBBL bids submitted to the mechanism. Also let us denote the tree node θ ∈ λi if
θ ∈ Ti and it is satisfied by trade λi written as sati(θ) = 1. Then we can formulate the
Winner Determination Problem (WDP) for the option exchange as shown below:

WD(T, x0) = λ∗ =argmax
λ,sat

∑
i

∑
θ∈Ti

vi(θ)sati(θ) (11)

s.t. (5), (6)
sati ∈ valid(Ti, λi),∀i (12)
sati(θ) ∈ {0, 1}, λij ∈ Z (13)

The solution of the above WDP should give the matrix of allocations λ that max-
imise the surplus for posted options. The mechanism has to choose the valid mappings
for sati for the nodes of submitted tree bids T and at the same time maximise the
valuations of these nodes.

4.4 Threshold Payments

We formulate payments rule as an optimisation problem using the minimisation of the
worst difference in Vickrey-Clarke-Groves (VCG) payments and threshold payments.
The threshold payment rule for obtaining budget-balanced VCG payments is given in
(14). Also let λ∗−i be the combinatorial exchange’s allocation of options where trader i
did not participate.

ρvcg,i = vi(λ
∗
i )−∆vcg,i (14)

∆vcg,i =

∑
j

vj(λ
∗
j )−

∑
j 6=i

vj(λ
∗
−i,j)

 (15)

where ρvcg,i is the VCG payment for the trader i, and ∆vcg,i is called as the VCG
discount for the trader i. Also note that the trader produces a scalar valuation for the
given allocation vector λ∗i , as the trader values the bundle as a whole. Then we can find
such ∆thresh,i which solves the minimisation of the worst difference between VCG
discount and the threshold discount.

∆∗thresh =argmin
∆thresh

ε (16)

s.t. ∆vcg,i −∆thresh,i ≤ ε ∀i (17)
∆vcg,i −∆thresh,i ≥ 0 ∀i (18)∑
i

∆thresh,i ≤
∑
i

vi(λ
∗
i ) (19)
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The solution ∆∗thresh can be used to compute the budget-balanced payments for traders 

given formula below:
ρthresh,i = vi(λ

∗
i )−∆thresh,i (20)

To illustrate the combinatorial exchange in option market, consider following ex-
ample given in Figure 3. There are two traders who submitted their bids to the combi-
natorial exchange to take a corresponding position in the option market. First trader is
bullish trader because he is willing to buy a bullish spread. Although he specified which
ITM call he wants, he is indifferent for the OTM call he wants to sell. So he can sell
either call at strike $105 for $4, or call at strike $110 for $2. Note that here bullish trader
is regarding the OTM calls as substitutes. The second trader is bearish in his belief on
asset prices, so he expects a asset prices to go down, and wants to take a bearish spread.
So he submits one ask for the ITM call, and he is indifferent in buying either of OTM
calls. There are 2 potential matches in given example. In the first match, bullish trader

Fig. 3: Bullish and Bearish traders’ bids using TBBL

is going to buy ITM call from bearish trader creating a surplus of $2, and sell OTM call
at strike $105 for $4 to the bearish trader creating a deficit of $1. In the second case,
bullish trader does the same with the ITM call, but sells OTM call at strike $110 for $2
creating a surplus of $1. The surplus maximising allocation would choose the second
matching, as it maximises the overall surplus to $3.

Now let us consider the payments paid and received by both traders using threshold
rule. Considering it using VCG scheme, we understand that the removal of any trader
would cause null trade. Hence the VCG discount of both traders is equal to the surplus
made, which is $3. In this way, the bullish trader’s total payment to the mechanism is
$10 − $2 − $3 = $5. However the bearish trader’s total payment to the mechanism is
−$8 + $3 − $3 = −$8, so he should receive $8 from the mechanism which runs into
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deficit of $5− $8 = −$3. But now using the threshold rule, we can find the minimised
deviance of the discounts from the VCG discounts. In this example, the threshold dis-
count is $1.5. So applying the threshold discount instead of VCG discounts, we get a
payment from bearish trader $10−$2−$1.5 = $6.5 and get a payment from the bullish
trader −$8 + $3 − $1.5 = −$6.5. As it can be seen mechanism balances the deficit,
through decreasing the amount of the VCG discount for both traders.

5 More on TBBL

We can further adapt TBBL for expressing option portfolios. This would require the
separation of concepts of option pricing and preferences specification. Although it is
common for existing bidding languages to combine both concepts into single atomic
bid, in option portfolio market it becomes redundant to provide valuations for the iden-
tical goods appearing in different portfolios, because we need to enforce the consis-
tency of option prices throughout multiple portfolios. The mechanism can also be easily
checked if the individual option prices are within their legal bounds (i.e. does not incur
guaranteed loss). Moreover there is possibility for the trader just to disclose his belief
and the number of options in his portfolio, and the mechanism can automatically pick
the right option portfolio for him.

The trader sends to the mechanism the list of his private valuations for the options
and his preference over these options expressed through TBBL. While referencing the
options in the TBBL, the trader does not indicate his valuation, but just indicate the
option type and the strike he wishes to buy or sell. This requirement is necessary in
option market because the mechanism should be able to check the consistency of op-
tion prices. For above reasons the traders are required to declare their valuations of
individual options to the mechanism.

On the other hand, the traders can be freed from the burden of building the TBBL
to express their preferences. For instance, consider a bullish trader who wants to take a
bullish spread, but he has not clarified which concrete ITM call and OTM call he wants
to buy and sell. He can submit to the mechanism following generic TBBL shown in
Figure 4 along with his option valuations for each option in the option chain. Hence the
trader declares all of his valuations in one list, and then interprets his generic bullish
preference to the mechanism. The options that the trader would like to use are high-
lighted with shaded background in Figure 4. Note that the trader did not give his val-
uations inside TBBL, but sent them in a separate list. This generic and declarative ap-
proach can be used for other types of options portfolios which contain more than two
options. For instance, the neutral option portfolios such as butterfly, long ladder, etc
contain more than two options, and can also be combined into generic format in the
same way it was done with spreads.

6 Concluding Remarks

In this paper, we described potential application of combinatorial exchanges in option
market and discussed its advantages. We described the possible cases where the sub-
stitutability and complementarity relationship between different options may emerge.
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Fig. 4: Generic template for double-option spreads using TBBL

We used the Parkes et al. ’s ICE to accommodate options with different moneyness
into pricing process. Morever, we presented the further improvements by changing the
structure of TBBL. We also introduced a generic class of TBBLs that could be used to
represent any kind of option portfolio with no specification on the strike prices.

However, there are still many aspects of the research yet to be studied. Research
needs an empirical analysis with real data from option markets to verify its capacity to
approximate the prices of any given option portfolio. This requires simulation of the
market with benchmark trading strategies such ZI-C [6] and ZIP [4]. This would entail
the development of online combinatorial exchanges which could better adapt to current
financial exchanges.
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