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Abstract. This paper provides a new insight to option pricing from a
mechanism design perspective. We simulate a real market environment
using double-auction (DA) and combinatorial exchange (CE) mecha-
nisms with different market clearing rules. In particular, we test VCG
mechanism in calculating the option prices. We use direct mechanisms
relying on the revelation principle which assumes traders’ truthfulness.
While implementing these market mechanisms, we borrowed ideas from
commonly referenced works in auction design such as McAffee’s DA and
Parkes et al. ’s ICE. Implementation of our mechanisms involved the use
of modern ILP tools such as Gurobi and CVX Research for solving win-
ner determination and price clearing problems efficiently. An important
aspect of our work is to understand how option trading strategies fre-
quently used by option traders may influence option prices. Therefore we
simulate option prices in DA where goods are traded in single-item bids,
and in CE where goods are traded in bundles. For simulating the under-
lying asset prices, we run a geometric Wiener process. We also compare
the resulting option prices with standard Black-Scholes prices.

1 Introduction

Standard financial theory provides a number of methods for calculating option
prices based on the market performance of an underlying asset. But there are few
models that take into account self-interested agents trading options, and their
role in forming the prices. It is commonly assumed that an individual trader is
mostly a price-taker, and therefore her influence on the market is insignificant.
But in reality, traders with their aggregated utilities form the market prices. Al-
though it is almost impossible to know how each individual agent would evaluate
the risk in the market, we can still model them with reasonable properties such
as rationality, competitive behaviour, and risk-neutrality. This would provide a
testable environment where various market mechanisms, trading behaviours can
be simulated. In fact, the main goal of this paper is to show how close option
prices can be when they are derived from an option market simulated using
self-interested agents or calculated using a Black-Scholes model.

There has been a growing interest in the research of markets as complex
game-theoretic systems since Myerson coined mechanism design as a framework
for strategic interactions between self-interested agents [MY83]. A new discipline
of auction theory emerged as a part of mechanism design, and it found its ap-
plications in solving many of well-known problems such as resource allocation,



scheduling, supply chain optimization, operations control and multi-agent sys-
tem implementation [SP11,YV10]. Similarly it has been also used in simulating
financial markets [SK01].

In this paper, we will combine two disciplines, auction theory and option
pricing, to build a mechanism which could be used for pricing options. We will
consider two specific mechanisms: Double Auction (DA) and Combinatorial Ex-
change (CE), and their theoretical frameworks. We will also propose tractable
implementations for them. We use modern software tools such as CVX1 for de-
scribing LP problems, and Gurobi solver 2 for computing the results. For running
the overall simulation, we use MATLAB and its core components. We consider
only European options on asset prices generated through a geometric Wiener
process. We also review some of the basic trading strategies such as bullish,
bearish and butterfly spreads, and use them for determining agents’ supply and
demand for options. We generate option prices using a Black-Scholes model and
compare them with our simulation results from DA and CE.

The paper is organised as follows. In Section 2, we review relevant literature
and recently published work in the field of auction theory and option pricing.
Section 3 provides the basic framework within which we will construct our simu-
lation model. We define fundamental concepts used in auction theory and review
the main aspects of option pricing. In Section 4, we present our simulation model,
and walk through its flow. Section 5 provides experimental results obtained from
our simulation. Finally, in Section 6 we make concluding remarks for presented
work, and provide our future plans towards enhancing our understanding on this
topic.

2 Related Works

The ultimate goal of any auction is the allocation of scarce resources to agents.
The space of auction types is limitless, because they may vary in their initial
settings, bidding rules, market clearing methods etc. Parsons describes more than
30 variations of auctions based on properties such as dimensionality, quantity
and heterogeneity of traded items; direction, sidedness, openness of accepted
bids; and kth order prices in determining winners[SP11].

We will focus more on DAs and CEs in this paper. DA is an auction mecha-
nism which involves sellers and buyers trading identical goods using single-item
bids. McAfee laid the foundations of DAs specifying the dominant strategy im-
plementation of its mechanism, and defined the optimal rules for aggregating and
clearing the bids [MC92]. A little later, Friedman and Rust coined Continuous
Double Auctions (CDA) where orders are cleared as soon as they arrive[FR93].
Another subtype of DAs is Periodic Double Auctions (PDA) where the market
mechanism is split into subsequent phases in which a market-maker first collects

1 CVX Research, Inc. CVX: Matlab software for disciplined convex programming,
version 2.0. http://cvxr.com/cvx, February 2014.

2 Gurobi 5.60, Commercial parallel MILP solver, http://www.gurobi.com, February
2014.



bids and asks, and then provides provisional allocations and prices. In this way,
a market-maker iteratively elicits preferences from traders, and optimally clears
the market. This sort of clearinghouse-like mechanism gives rise to generalization
of DAs - CEs which involve a combinatorial matching of bids and asks that may
have complementarity or substitutability values when dealt in bundles. There
are substantial differences in solving DA and CE problems, as they involve dif-
ferent mathematical and computational challenges. In this sense, CE is more
complex in its theoretical formulation and implementation. For example, unlike
DA, CE has to implement a bidding language which should express exponen-
tially large number of combinatorial alternatives in a concise and comprehensive
way. Propositional logic is often used to join trader preferences and encode them
into a well-defined bidding language [NN06]. Bidding languages in CE transform
to the formulation of yet another complex problem called the winner determina-
tion (WD) problem whose solution is an efficient allocation of goods. Weighted
set-packing problem can be reduced to a WD problem for CE due to its nature
of settling overlapping sets of bids and asks. It is well-known that this problem
belongs to the class of NP-hard problems. We will discuss more about the WD
problem and its formal definition in the next section of this paper.

There have been a number of researches accomplished in applying market-
based mechanisms to financial derivatives markets. King et al. has described a
multi-agent model for derivatives market which used Gaia methodology [AK05].
Espinosa developed a software solution for resource allocation using the power
of options and market-based systems [OE08].

3 Preliminaries

In this section, we define a formal framework for our proposed simulation model
and explain some of the concepts that we use throughout this paper. For a given
quasilinear auction setting (N,G, λ0, v), we will implement a direct mechanism
(χ, ρ) with an objective function W . Now let us go through each element of this
statement:

– N - is the set of traders, indexed by i ∈ {1, 2, ..., n}
– G - is the set of goods (in the context of this paper, options), indexed by
j ∈ {1, 2, ...,m}

– λ0 ∈ Zm×n represents the initial allocation matrix (i.e. supply and demand
matrix) where rows are the goods, and columns are the agents. The elements
of the matrix are quantities demanded or supplied. Positive quantities mean
buying (i.e. demand), negative quantities mean selling (i.e. supply). Initial
allocation can be also written in terms of non-negative integers as λ0 =
λ0B − λ0A where λ0B represents demand, and λ0A represents supply.

– v is a valuation function whose output changes based on mechanism type.
DA requires linear prices for each item, therefore v : Zm×n → Rm×n takes
some allocation matrix λ and maps it to another matrix of the same size
with real values. This will represent each agent’s valuation for each item.



However, in CE, v : Zm×n → Rn accepts λ of the same size, but returns only
a vector Rn, as agents evaluate items in bundles.

– λ = χ(v, λ0) is an allocation function χ which returns feasible allocation λ
for any given valuation function v and initial allocation λ0.

– p = ρ(v, λ) is a payment function ρ which returns anonymous (i.e. same for
all agents) linear prices p ∈ Rm for each item.

– W is an objective function of a mechanism which implements an auction
setting. The mechanism is said to be implemented, if W is either maximised
or minimised.

The reason why we use matrix λ where traders disclose their demand and
supply for each item is that we will not implement a bidding language for rep-
resenting trader preferences in a sophisticated way as it has been proposed by
Nisan [NN06] using propositional logic or using a tree-based bidding language
proposed by Parkes [PK08]. We will simply assume that trader bids can be either
divisible or indivisible, and the quantities indicate their preferences over given
items.

We will implement a direct mechanism based on the revelation principle
which states that for any indirect mechanism, there exists a truthful and direct
mechanism such that its outcome is at least as good as in an indirect mechanism
[YV08]. This leads to another assumption about the truthfulness of agents in
declaring their valuations. Nonetheless, we will also use a strategy-proof mech-
anism such as VCG to make incentive compatibility a dominant strategy for
agents. As it has been stated above, auctions will be implemented in quasilinear
setting which implies that the utilities of agents must be as follows:

ui(λi) = vi(λi)− pTλi,∀i ∈ N (1)

The utility function requires two types of outcomes for given mechanism: λi
allocation of goods and p clearing prices. λij ∈ λi determines if trader i wishes
to buy or sell item j based on whether it is positive or negative respectively. So
linear prices for a pure seller will be negative, and for a pure buyer positive. We
will assume that the sign of the valuation function vi(λi) will depend on the sign
of λij ∈ λi, which means that for a pure buyer it has to be positive, for a pure
seller negative. If trader i increases his volume for any given item j, it should
not decrease his valuation for a previous allocation. In this way, we assume that
the valuation function is monotonic. Formally, we define it as follows:

Definition 1. The valuation function vi is monotonic, if for given two quanti-
ties λij ∈ λ and λ′ij ∈ λ′ such that λij ≥ λ′ij holds for every j, then it must be
the case that vi(λi) ≥ vi(λ′i).

In the utility function, we assume that agents are risk-neutral; therefore we
use linear pricing pTλi to be neutral in amounts and dismiss any budget con-
straints. However risk-neutrality in the context of option pricing must not be
confused. We will assume that every agent will have her own future price expec-
tation (which might not be a risk-neutral forecast) and agent evaluates options
based on this factor.



3.1 Auction Design

Auction mechanism is supposed to change the initial allocation to a more pre-
ferred one, thus increase utility for every agent. Let us define ∆λ ∈ Zm×n to
denote the change in allocation, or just call it trade. It can also be written with
non-negative integers ∆λ = ∆λA−∆λB where ∆λA denote change in asks, and
∆λB change in bids. Then the final allocation is equal to λ = λ0+∆λ. Let v(∆λ)
denote change in value for each agent. In quasilinear setting, efficient strategy
must maximise the social welfare which is the maximisation of the sum of all
trader valuations. We can drop constant term v(Q0) from objective function,
and consider efficient trade as a maximised growth in social welfare.

Definition 2. For given auction (v, λ0), efficient trade ∆λ∗ solves:

max
∆λ

∑
i

vi(∆λi) (2)

s.t. λ0A,ij −∆λA,ij ≥ 0, ∀i,∀j (3)

λ0B,ij −∆λB,ij ≥ 0, ∀i,∀j (4)∑
i

∆λij = 0, ∀j (5)

∆λij ∈ Z

Constraint (3) ensures that no trader sells more than she owns, and (4) ensures
that no buyer buys more than she wants. Constraint (5) enforces that every sold
item must be bought by some agent. All trades satisfying constraints (3), (4)
and (5) constitute the set of feasible trades which is denoted as F(λ0). We will
consider using χ as a function which returns the efficient trade for given initial
allocation and valuation profile.

Now we will review competitive equilibrium prices which maximise everyone’s
utility. We will denote equilibrium prices as p∗, and corresponding cost part of the
quasilinear utility can be written as p∗T∆λi. Formally, competitive equilibrium
is defined below [PK08]:

Definition 3. p∗ is said to be in competitive equilibrium for (v, λ0) if there is
some feasible trade ∆λ ∈ F(λ0) such that:

vi(∆λi)− p∗T∆λi ≥ vi(∆λ′i)− p∗T∆λ′i, ∀∆λ′i ∈ Fi(λ0) (6)

It is very unlikely that equilibrium prices are found in practice, therefore δ-
approximate competitive equilibrium prices are used more often.

Definition 4. p∗ is said to be in δ-competitive equilibrium for (v, λ0) and δ ∈
R≥0 if there is some feasible trade ∆λ ∈ F(λ0) such that:

vi(∆λi)− p∗T∆λi + δ ≥ vi(∆λ′i)− p∗T∆λ′i, ∀∆λ′i ∈ Fi(λ0) (7)

Consider a function v(λ0) that returns valuation matrix m × n, where each
agent i discloses his value for every individual item j. Then the surplus-maximising
WD problem for DA can be written as following ILP:



Definition 5. For given double auction (v, λ0), surplus-maximising WD prob-
lem is

max
∆λ

∑
i

∑
j

vij∆λij (8)

s.t. ∆λij = λ0ijxij ∀i,∀j (9)∑
i

∆λij = 0, ∀j (10)

∆λij ∈ Z, xij ∈ {0, 1}

where xij is a binary decision variable.

Constraint (9) can be derived directly from feasibility constraints (3) and (4).
λ0A,ij − xij∆λA,ij ≥ 0 is true where xij can take only {0, 1}. It is symmetric to
(4) as well. As it is seen from formulation, in DA, quantities are not fractional,
so individual bid or ask on item j must satisfy the requested amount, otherwise
it is not accepted. Another way of finding an efficient allocation in DAs is using
overlapping bids and asks. In this policy, mechanism first sorts bids in descending
order vB,1({j}) ≥ vB,2({j}) ≥ · · · ≥ vB,n({j}) and asks in ascending order
vA,1({j}) ≤ vA,2({j}) ≤ · · · ≤ vA,n({j}). Then it picks the first l > 0 bids and
asks, where l is the maximal index for which Bl ≥ Al. These overlapping bids
will determine the winners of DA [PK04,MC92]. This will maximise the surplus
of the allocation.

However in CE, all combination of bids and asks must be satisfied. The for-
mulation of WD problem for CE is similar to DA, however the decision variable
is not a matrix, but a vector of x ∈ {0, 1}n for each trader. Similarly, the valua-
tion function for given trade ∆λ returns a vector of Rn, taking every agent’s bid
as an indivisible bundle, and assigning joint valuation to it. Mechanism decides
whose bids to satisfy fully in order to maximise the surplus. Below is the formal
definition:

Definition 6. For given combinatorial exchange (v, λ0), surplus-maximising WD
problem is

max
∆λ

∑
i

vi(∆λi) (11)

s.t. ∆λi = λ0ixi ∀i (12)∑
i

∆λij = 0, ∀j (13)

∆λij ∈ Z, xi ∈ {0, 1}

where xi is a binary decision variable, λ0i is an initial allocation for agent i.

We will use McAfee’s price clearing method [MC92] for DA and VCG for CE.
McAfee DA pricing is budget-balanced, strategy-proof and individual rational
mechanism. However VCG is not a budget-balanced mechanism [MY83], al-
though it is efficient, incentive compatible and individual rational. Therefore we



will find clearing prices that minimise the worst error between VCG payments
and make them fixed for every trader. This will naturally make exchange budget-
balanced. This idea is slightly modified version of Parkes et al. ’s Threshold rule
[PK08].

Definition 7. For given lists of ordered bids (in descending order) and asks
(in ascending order) if there exists l > 0 such that vB,l({j}) ≥ vA,l({j}) and
λ0A,lj ≥ λ0B,lj (free disposal rule), then McAfee DA price for item j is:

ρ∗j =
vA,l+1({j}) + vB,l+1({j})

2
, ∀j ∈ G (14)

In VCG mechanism prices are computed as the overall social cost that agent i
introduces to market. Formally it is defined below:

Definition 8. For given combinatorial exchange (v, λ0), VCG payments are

ρvcg,i =
∑
t6=i

vt(χ(v−i))−
∑
t6=i

vt(χ(v)), ∀t, i ∈ N (15)

s.t. χ(v) = arg max
∆λ∈F(λ0)

∑
i

vi(∆λi) (16)

where v−i is a valuation profile without agent i.

It can be seen from VCG payments that it generates specific payment for each
trader and these payments once aggregated may result in surplus or deficit for
the mechanism. In order to distribute surplus among traders, we will minimise
the worst-case difference between VCG payment ρvcg,i and clearing linear prices
ρ∗T∆λi. This will approximate competitive equilibrium prices with ε error.

Definition 9. For given combinatorial exchange (v, λ0) and VCG payments
ρvcg ∈ Rn, there are anonymous clearing prices ρ∗ ∈ Rm defined as:

ρ∗ = arg min
ρ

ε (17)

s.t. ρT∆λi − ρvcg,i ≤ ε, ∀i (18)

−(ρT∆λi − ρvcg,i) ≤ ε, ∀i (19)

ρj ≥ 0, ∀j ∈ G, ε > 0 (20)

where ρ∗ is the vector of clearing prices for each item j.

When prices are anonymous, and supply and demand quantities match (5), all
payments will be fully received or paid and thus will make mechanism generate
zero revenue. This makes it strictly budget-balanced. Mechanism is also incentive
compatible because it satisfies necessity and sufficiency conditions for ρ and χ
functions. Payment for each agent i is calculated as ρi = ρ∗T∆λi. Necessity
condition for incentive compatibility states [YV08] that payment function for
agent i must involve only the valuations of other agents v−i and agent i’s own
choice (i.e. bid) ∆λi. From (17), we know that ρ∗ is calculated directly from



the output of VCG payments, which in turn involves only v−i in computing
payment for agent i. Agent’s own choice ∆λi is derived from his initial bid λ0i
using a decision variable xi (12). Hence the necessity condition is met. Sufficiency
condition states [YV08] that a choice function (i.e. allocation function) χ must
provide utility maximising allocation for each agent i. From the definition of
WD problem (11), we can see that the solution of the WD problem finds the
best allocation which maximises overall utility, thus satisfying the sufficiency
condition.

3.2 Options

In this section, we will provide some basic notions about European options and
how they are priced. An option is a financial contract which provides to its holder
the right of buying or selling certain assets at an agreed future price (i.e. strike
price). The one who sells (writes) them takes the liability to fulfil buy or sell
requests in exchange for the premium he receives. European options are exercised
upon their maturity date. An option allowing its holder to buy is named a call
option, and allowing to sell is a put option [HL01]. Depending on the present
value of its strike price K and the current price of its underlying asset St, options
can be classified into Out-of-The-Money (OTM), At-The-Money (ATM) and In-
The-Money (ITM) options. The table below illustrates the types of options that
are traded in exchanges. We can also define the upper and lower boundaries for
option valuation in equations (21), (22).

Option Types
OTM ATM ITM

CALL K > St K = St K < St
PUT K < St K = St K > St

max(St −K, 0) ≤ c ≤ St (21)

max(K − St, 0) ≤ p ≤ K (22)

For simplicity reasons, we will assume that the risk-free interest rate is zero,
so money has no time value. Also there is no friction in the market, so options
can be sold and bought at the same price without any transaction costs involved.

There is an established relationship between put and call options with the
same strike price and maturity date. This relationship results from the possibility
of buying the one and selling the other. Consider a case, when trader buys a call
option at K strike price, and at the same time sells a put option with K strike
price, and both have the same maturity T . In some sense, it seems that trader can
compensate the cost of a call option he bought for with the premium he received
for selling put. So on maturity date, ST turns out to be higher than strike price
K, so the trader can benefit profit as a difference of ST − K. However if ST
appears to be less than K, then trader has a liability to fulfil the put option that
he sold, so he incurs a loss of K −ST . This market position actually simulates a
forward contract which could be obtained for free. This type of contract is free
because it involves future possible liability or profit at the same time, so the
risk for both parties is even. Once the combination of put and call options can
replicate the liabilities of a forward contract, the prices for put and call options



must hold the put-call parity relationship: (c+K = p+ ST ) [HM04]. Using the
put-call parity relationship, we can easily convert call prices to put prices, and
vice versa.

4 Simulation Model

We break down our simulation into three steps. Firstly, we generate bids for
agents with heterogeneous beliefs on future asset prices. To obtain these fore-
casts, we simulate a Wiener process for each agent. Then agents are required
to pick one of the option trading strategies based on their beliefs. Option trad-
ing strategy (OTS) is a vector of quantities of options that each agent needs to
buy or sell in order to make a profit based on his forecasted asset price. Then
agents calculate their private values for each option type and submit their bids
to the DA and CE mechanisms. The second step solves DA and CE problems
to find linear prices for each option type. In DA, winners are determined by
solving (8), and clearing prices are calculated using McAfee method (14). In
CE, winners are determined through surplus-maximisation formulated in (11).
Then VCG payments are calculated using (15), and the resulting payments are
used to find minimised worst-error prices (17) to clear the market. Finally, in
the third step, we collect linear prices from both mechanisms and compare them
with Black-Scholes prices.

4.1 Bid Generation

We first generate asset price forecasts for each agent i using a geometric Wiener
process. Based on predefined volatility σ, initial asset price S0 and white noise
z ∼ N (0, 1) we can calculate possible asset price outcome at time T . Also we
assumed that risk-free rate r is zero. Below is the formula that we use:

Si,T = S0 exp(−1

2
σ2T + σ

√
Tz) ∀i ∈ N (23)

Then every agent calculates his own values for OTM, ATM and ITM puts and
calls separately. We use some ε variation from ATM strike price K to create
OTM and ITM options. Afterwards agents pick one of the OTSs listed in Table 1
where the quantity of option type to buy or sell is specified in positive or negative
numbers respectively. They will choose OTS based on its direction that matches
their forecast. For example if agent’s forecast in between S0− ε ≤ Si,T ≤ S0 + ε,
then agent will choose neutral strategy. If Si,T > S0 + ε, then agent will choose
bullish strategy. And finally if Si,T < S0−ε, the agent will choose bearish strategy.
Traders pick random strategy among strategies with same direction. However
some OTSs can be both bullish and bearish such as Long Straddle, so both
bullish and bearish traders can be interested in this OTS. It is also possible that
OTS is more bullish, than bearish, and vice versa. For example, Strip generates
greater payoff when prices go up. Therefore there is a biased chance for a bearish
trader to choose Strip among other bearish OTSs because it is less bullish.



Algorithm 1 Bid Generation

Ks← {S0, S0 + ε, S0 − ε} {Array of strike prices}
priceFuncs← {(st, k)(min(max(st − k, 0), S0)), (st, k)(min(max(k − st, 0), k))}
for i ∈ N do
z ← randn(0, 1) {random variable from N (0, 1)}
Si ← S0 exp(− 1

2
σ2T + σ

√
Tz), j ← 1

for k ∈ Ks do
for val ∈ priceFuncs do
vij ← val(Si, k)
j ← j + 1

end for
end for
λi = pickOTS(S0, ST , ε)
DAi ← {λi, vi}
CEi ← {λi,

∑
j λijvij}

end for
return {DA,CE}

We sum up the process of bid generation for all agents in Algorithm 1. In
this algorithm, bidders evaluate their forecasts, calculate their private values for
each option, and then pick an appropriate OTS. Finally, they submit their bids
to DA and CE. They submit individual option valuations to DA, and bundled
valuations to CE.

Table 1. Option Trading Strategies

Name cATM pATM cOTM pOTM cITM pITM Direction

Long Call 1 0 0 0 0 0 bullish

Long Put 0 1 0 0 0 0 bearish

Bull Call Spread 0 0 -1 0 1 0 bullish

Bear Call Spread 0 0 1 0 -1 0 bearish

Butterfly Put Spread 0 -2 0 1 0 1 neutral

Short Put Ladder 0 1 0 1 0 -1 bearish > bullish

Iron Butterfly -1 -1 1 1 0 0 neutral

Short Straddle -1 -1 0 0 0 0 neutral

Long Strangle 0 0 1 1 0 0 bearish and bullish

Short Strangle 0 0 -1 -1 0 0 neutral

Strip 1 2 0 0 0 0 bullish > bearish

Strap 2 1 0 0 0 0 bearish > bullish

4.2 Running Mechanisms

Once we have bids generated, we can feed them into both DA and CE mech-
anisms. We will run mechanisms several times per each time step, and then
average the resulted prices. This will smooth up some noise associated with ran-
domised selection of OTSs, and experimental errors. We continue this routine



for every time step t till options reach their maturity date T . Also we update
asset price St for each time step t through simulating a global Wiener process.
Here is the update rule for asset prices:

St+1 = St exp(−1

2
σ2T + σ

√
Tz) (24)

Algorithm 2 is a subroutine for computing DA prices for given DA bids. As it
was mentioned before, we solve (8) to determine the winning bids and asks, and
then find offsetting maximum bid and minimum ask to calculate their average as
a clearing price. In CE, we follow the same routine to find winning allocations.
But we calculate bids as bundles, and satisfy them fully. Then we calculate VCG
payments, and minimise the worst-case error for these payments to find the final
clearing prices. Algorithm 3 illustrates the steps of doing this.

Algorithm 2 Running DA Mechanism

∆λ∗ ← arg max∆λ∈F(λ0)

∑
i

∑
j vij∆λij

for j ∈ G do
offset bid← max(find(vj |∆λ∗j = 0 and λ0

j > 0))
offset ask ← min(find(vj |∆λ∗j = 0 and λ0

j < 0))
ρ∗j ← (offset bid+ offset ask)/2

end for
return ρ∗

Algorithm 3 Running CE Mechanism

∆λ∗ ← arg max∆λ∈F(λ0)

∑
i vi(∆λi)

for i ∈ N do
λ0
−i ← λ0\{λ0

i }
∆λ−i ← arg max∆λ∈F(λ0

−i)

∑
t 6=i vt∆λt

ρvcg,i =
∑
t 6=i vt(∆λ−i,t)−

∑
t6=i vt(∆λ

∗
t )

end for
ρ∗ ← arg minρ δ, s.t. (18),(19) and (20)
return ρ∗

The output prices of the mechanism may not conform with put-call parity
due to surplus-maximising objective in WD problem. In order to enforce this
relationship, we will pick the prices only for one type of option, say call, and use
put-call parity to find put price. In this way, we can avoid arbitrage associated
with buying and selling calls and puts with incompatible prices. This arbitrage
opportunity exists because there are other derivatives such as forward contracts
which can be obtained for free, and guarantee the same payoff.

5 Experimental Results

We fix several parameters for the experiment. For example, options have constant
strike prices throughout the timeline. This means that agents will trade only with
predefined set of options at the beginning of the simulation, and no new type



of option with new strike price will enter the market. Also option maturity date
will be constant, and it will approach its maturity date through the timeline of
the simulation. Asset price volatility will also be fixed. We have set the following
parameters for the experiment:

Table 2. Parameters of the experiment

Name Value

Initial Asset Price S0 = 100

Strike Price K = 100

Deviation from Strike price ε = 10

Asset Price Volatility σ = 0.05

Risk-free rate r = 0

Time to maturity T = 100

Number of agents N = 100

Number of option types G = 6

Number of tests per mechanism w = 30

Fig. 1. Call and put prices for DA mechanism and Black-Scholes

In Figure 1 we can see call and put option prices from DA in comparison with
Black-Scholes prices. It illustrates that DA mechanism can effectively simulate
Black-Scholes prices, as call and put prices for both models move in tandem. Call
prices rise because of a continuous increase in asset prices, and this is reflected
both in Black-Scholes and the DA models. On the other hand, put prices go
down, finally converging to zero. We use put-call parity relationship to covert
DA call prices to corresponding put prices, and so does the Black-Scholes model.
Figure 2 also shows converging prices in the simulation of CE mechanism and
Black-Scholes model. It can be seen that CE call and put prices almost re-
peat Black-Scholes, and converge on maturity. CE prices are somewhat volatile



Fig. 2. Call and put prices for CE mechanism and Black-Scholes

compared to Black-Scholes, and this could be the result of bundled valuation of
options, as the number of participating traders decrease, and their heterogeneous
forecasts have greater effect on price changes. Table 3 presents the aggregated

Table 3. Summary of Key Indicators

DA CE

Absolute Error on Black-Scholes 11 6.5

Relative Error on Black-Scholes 24% 20%

Overall Utility: Mean 2547 2146

Trader Participation: Mean 68/100 43/100

Trader Participation: Standard Deviation 7 5

Option Volume Traded: Mean 57 46

Option Volume Traded: Standard Deviation 1 3

Delta of calls (∆c\∆S) 0.35 1.43

Delta of puts (∆p\∆S) -0.61 -0.26

indicators of the simulation per each timestep. Error-wise both mechanisms per-
formed equally well, as they deviate about 20% from Black-Schole prices. It can
be seen from given results that trader participation is higher in DA, because it
addresses every bid individually. Therefore more traders can participate in the
market, and thus increase the overall utility and the volume. Due to central limit
theorem, the more traders get involved in the market, the closer are the prices
to an equilibrium point, which makes them more stable. However in CE mech-
anism, bids are indivisible and must be fully covered. This makes bid sourcing
more complex leaving a number of high value bids unsatisfied. As a result the
number of active traders decrease and prices become highly dependent on indi-
vidual minor spikes. This makes option prices in CE more volatile which can be
seen from option’s high delta too.



6 Concluding Remarks

We have proposed a framework for pricing options in a simulated market environ-
ment. We formulated basic problems such WD and price clearing as core element
of the mechanism. Then we implemented two popular mechanisms DA and CE
to generate option prices. As it can be seen from our experimental results, both
mechanisms performs as well as Black-Scholes. In our future work, we would like
to study results more thoroughly by conducting sensitivity analysis on various
parameters of the simulation such as asset price volatility and trends, trader
beliefs, choice of OTSs, and bidding and price clearing methods. We will also
closely look into VCG mechanism separately by analysing how VCG payments
affect the overall well-being of traders in an option market, and what role it
plays in forming the clearing prices. Also it would be interesting to compare our
simulation results with real data in order to verify accuracy of the predictions.
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